@o Capitole du Libre 2023

Discover and understand

Embedded Linux

Thomas Petazzoni
thomas.petazzoni@bootlin.com

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

bootlin

OO\«

embedded Linux and kernel engineering

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

: -
Who is speaking?

Thomas Petazzoni Bootlin

Linux user since ~1998 Embedded Linux expertise

Embedded Linux engineer since 2008 Engineering and training

CEOQ at Bootlin 80% of business outside of France
Co-maintainer of Buildroot 20 people

900+ patches in the Linux kernel 8000+ patches in the Linux kernel
Co-founder of Toulibre and Capitole Strong open-source culture

du Libre Freely available training materials

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

i ?
Why this talk

Most Linux users/developers are aware of Linux on desktops/servers
But there's another field where Linux is very widely used: embedded systems!

Goal of the talks
Show examples of embedded systems where Linux is used
HW architecture of Linux-based embedded systems
SW architecture of Linux-based embedded systems

Ready?

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/46

Wikipedia to the rescue

An embedded system is a computer system—a combination of a computer processor,
computer memory, and input/output peripheral devices—that has a dedicated function
within a larger mechanical or electronic system

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/46

Trend in embedded systems

Increasing complexity / feature set

1. Purely analog electronics
2. Micro-controllers with bare-metal applications (no operating system) or relatively

simple real-time operating systems
3. Micro-processors to run a rich operating system (Linux!) to provide multimedia

features, connectivity, security, etc.

Think about the evolution of TVs

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/46

4% Agriculture

and convenience packages

SETTLE IN AND

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/46

AWAY PERIOD

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/46

Electronic equipment

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/46

Coffee machine

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/46

at bridge games

rivers and embedded Linux - Development, consulti ning and support - https://bootlin. con

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/46

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/46

4% Digital signage — advertising crap

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/46

‘Qb Consumer devices: multimedia, home automation
9

' (@) GARDENA y

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/46

4% Gas filling station

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/46

Transportation

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/46

Space

Falcon 9 image from NASA, under public domain

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/46

Discover and understand Embedded Linux

Hardware

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/46

4% Intel PC architecture

PCle Gen 3.0 with 16 Lanes
with up to Three Controllers
Display Ports
eDP/DP 1.2, DVI, HDMI* 1.4a

Analog VGA
Intel* H81
=SS " Express Chipset
Intel® High Definition Audio or
Intel* Q87/C226
Chipset
6 to 8 PCle*x1 Gen 2.0

Intel® Ethernet Connection
1217-LM/1218-LM

DDR3/DDR3L 1600@1.5V

(dual channel, ECC optional—

4th Generation
Intel® Core™ or
Intel® Pentium*®
Processor

SKU dependent)

Fully Integrated
Voltage Regulator (FIVR)

Intel* Flexible Display
Interface (Intel® FDI)

4 to 6 SATA Ports
" (2 to 4 SATA 6.0 Gbps)

14 Total USB Ports
(4 10 6 USB 3.0)

DMI ’

LPCorSPI

BIOS Support

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/46

CPUs in embedded systems

16-bit micro
controllers

64-bit micro
processors

32-bit micro
processors

32-bit micro
controllers

8-bit micro
controllers

Microchip PIC Microchip PIC24 ARM Cortex-M ARMvV5 ARMvV8-A
Microchip AVR RPi RP2040 ARMv7-A RISC-V 64
ST STM8 RISC-V 32 x86-64
up to ~100-200 Mhz x86

~tens of Mhz 100 KB to ~MBs of 500 Mhz to > 1 Ghz
~tens of KB of RAM/flash RAM/flash 500 Mhz to > 1 Ghz many MBs to GB of

many MBs to GB of RAM/flash

RAM/flash

Internal RAM & flash External RAM and storage
No MMU MMU

all real-time OS
OT, FreeRTOS, Zephyr, etc.

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

20/46

Concept of System-on-chip

Integrate many HW features in a single chip: system on chip

One or several CPU cores
Many HW interfaces

Slow: GPIO, UART, I2C, SPI
High-speed: MMC/SDIO, PCle, USB
Multimedia: parallel in/out, DSI, CSI, LVDS, HDMI, 12S

Accelerators: crypto, video encoding/decoding, GPU, NPU
Silicon vendors design chips by combining hardware blocks

Purchased from IP vendors
Designed internally

IP vendors: ARM, SiFive, Cadence, Synopsys, etc.
Silicon vendors: NXP, Tl, Microchip, Marvell, Rockchip, Qualcomm, etc.

Massive number of SoCs available, to address very different markets

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/46

4% SoC example: Microchip SAM9x60

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/46

4% SoC example: Rockchip RK3588

Connec y |

USB OTGO 3.1/2.0/TypeC |
USB OTG1 3.1/2.0/TypeC i

i System Peripheral

Cortex-A76 Cortex-ASS
Quad-Core Quad-Core

(64K/64K L1 1/D Cache) (32K/32K111/0 Cache)

.
:
.

| —

.

System register 2MB L2 Cache 512KB L2 Cache

i 30x Timer 3MB L3 Cache

MCU (Cortex-M0) X3

Interrupt Controller - "
Multi-Media Processor

i 3xDMAC 10X UART i
‘ T ——— — “ |
i
|
i Image Enhancement I Dual pipe ISP i
Processor (Support camera HDR input)
i Multi-Media 2« Giga-Ethernet |
i Interface 8K Video Encoder 8K 10-bits Vi — i
([2xmrcsiomv aujcony 3t (H265/H264...) (H265/H264/VP9...) 1
4 MIPL-CSI DPHY 2L]
| [r—

2x MIPI-DSI DPHY 4 Lane

|| 2xHDMI2.1TX/eDP1.3 4 Lane Embedded !
T T T T External Memory Interface

I I 2xDP1.4 4 Lane with HDCP2.3 M Memory |

[S—c, AT 5D3.0/MMC4.5 Y |
1

|

Display Controller i
i isplay Quad-channel x16bit T |

(Support video HDR output)

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/46

4% SoC example: Texas Instruments AM64

AM64x
Application cores Real-time cores Isolated core®

Arm’ Arm Arm” Arm® Arm’ Arm’ Arm®
Cortex"-A53 § Cortex®-A53 Cortex"-R5F i Cortex”-R5F i Cortex”-R5F | Cortex"-R5F Cortex"-M4F
256KB L2 with ECC 128KB TCM 128KB TCM 256KB SRAM|

System Memory

2 MB SRAM with ECC DDR4/LPDDR4 with inline ECC 2x MMCSD

Security System Services
Secure m m DREC 12x GP Ti 4x WWDT Sync
=t wos s e Wl) -
Industrial Connectivity General Connectivity Isolated Connectivity”
(for use with Cortex-M4F)

PCle
1x Single lane

PRU-ICSS(Gh) GPMC /ELM m

EENE EETH I T30
PRU-ICSS(Gb) =

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/46

% SoC example: Microchip Polarfire

P Programming

‘System Services

PUF | sNvm

6ab X4

PolarFire* FPGA Fabric

p—

“DPA-Safe Cryplo co-processor supported in § devices
+'SECDED supported on all MSS memories

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/46

Typical design of embedded hardware

A custom board is typically designed for each embedded product
A system-on-chip at its core

RAM: DDR, LPDDR

Storage: eMMC, SD, flash

Display panel, sometimes a display bridge, a touchscreen controller
Audio codec

Camera sensor

Ethernet PHY, Ethernet switch

WiFi, Bluetooth chips, or other radio interfaces

Power supplies, protections

Connectors

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/46

Board example: lkea smart home hub

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/46

Board example: Amazon Ring

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/46

evaluation board

4% Board block diagram: STM32MP135

32 kHz crystal

24 MHz crystal

DDR3L.

i

43" TFT 480272

Capacitive

STM32MP135F

12¢

LToC GPIO

5V_VIN
USB Type-C®
connegtor

STPMICT

Wake-up button

2 user LEDs
2 user butions
Tamper bution
Reset button

touch panel

Hub: 4x USB Type-A

USB OTG Tyj

i

16-bit 110 expander

SoMMC
12¢ —
Ethernet 1 RMIl Somme
Ethernet 2 RMII UART
irver :l
g GPIOS

ocMi

| MIPI CSI-2° bridge

<>
Camera module
microSD™ card
connector
| Wi-Fi*802.11 bigh
| Bluetooth®low
energy V4.1

GPIO 40-pin
connector

oT7I708V1

boOotIiN - Kernel, d

ers and embedded Linux - Development, consulting, training and support - https://boot1in. con

29/46

FPGA and micro-controllers

In Embedded Linux systems, Linux runs on application processors
Some systems have special requirements

Very tight real-time requirements
Safety requirements
Support of custom hardware interfaces

Integration of
Micro-controllers: to run bare-metal code / small real-time OS
FPGA: to program custom hardware logic
. either ...

Inside the system-on-chip
or on the board

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/46

Discover and understand Embedded Linux

Software

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/46

Main development steps

Board Support
Package 3 System 3 Application
(BSP) integration development
development

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/46

Board Support Package development

Making sure that the hardware is supported by the software
Mostly affects the bootloader and Linux kernel

Goal is to have all required hardware interfaces/features supported
Requires

Porting/adaptation
Sometimes new drivers

The hardware in each system-on-chip is often different: different drivers are
required
The hardware in each board is often different: different drivers are required

There is no such thing as “a kernel that works on ARM"”

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/46

4% Board Support Package development

Board support

Drivers for
peripherals

Device Tree files:
board description

System-on-chip support

Drivers for SoC
HW blocks

Device Tree files:
SoC description

CPU architecture support

ARM, RISC-V, ARM64, PowerPC, etc.

Hardware-agnostic parts

Scheduler Memory X
process/thread management | Security |
Networking Filesystems Driver
stack i subsystems
Linux kernel

To be done by you
potentially re-using
existing drivers

In upstream (ideal)
or provided by the
silicon vendor

Available in the
upstream Linux
kernel

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

34/46

BSP development: starting point

Ideally: the upstream Linux kernel, and an upstream bootloader has support for
your SoC, and one or several evaluation boards

Less ideally: your silicon vendor provides a fork of Linux 4+ bootloader that
includes support for your SoC, and one or several evaluation boards

Less ideal because: generally not maintained over the long run, poor quality,
non-standard interfaces

Even less ideally: what your silicon vendor provides is so crappy that you can’t use
it

More work /effort for you

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/46

BSP development: your work

Mainly: what is specific to the hardware on your board
Your hardware often derived from a reference design/evaluation board

Bootloader level
DDR controller configuration, potentially a tricky part
UART
Storage: eMMC, SD, NAND flash
Sometimes networking, or other peripherals depending on the use cases
Always: Device Tree (description of HW) + configuration
Sometimes: new drivers needed for on-board peripherals

Linux kernel level

All hardware features that are needed
Always: Device Tree (description of HW) + configuration
Sometimes: new drivers needed for on-board peripherals

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/46

Boot flow

On x86
UEFI firmware — GRUB bootloader — Linux kernel
Most ARM 32-bit platforms
ROM code — U-Boot bootloader — Linux kernel
ARM 64-bit platforms (simplified)
ROM code — Trusted Firmware — U-Boot bootloader — Linux kernel

Sometimes a trusted operating system, such as OP-TEE
Sometimes additional firmware, running on co-processors

Bootloader is generally U-Boot, not Grub

Exact boot flow is specific to the system-on-chip

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/46

System integration

How do you integrate all the software components together?
Bootloader
Linux kernel
Open-source components: systemd? Wayland? GStreamer? NetworkManager?
Python? NodelS? Qt? Gtk? OpenCV? etc.
In-house components: your libraries/services/applications
Varying levels of complexity
Some embedded Linux systems have a very simple software stack
Some need very complex software stacks
And everything in-between
Two main options

Binary distributions
Embedded Linux build systems

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/46

Binary distribution

What you use on your desktop/server: Debian, Ubuntu, Fedora, RaspberryPi OS
Provides
Pre-compiled packages of many open-source software components
Installer
Configuration/integration
Good:
Easy to install, easy to install packages, well known
Regular updates, including security
Less good for embedded:
Biased towards installation rather than factory install a pre-configured image
Biased towards native compilation, and development on the target
Difficult to have a reproducible image creation process
Large, not easy to tweak/optimize, lots of mandatory dependencies

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/46

Embedded Linux build system

Open-source components
(from http, ftp, git, svn, etc.)

In-house components
(from http, ftp, git, svn, etc.)

Embedded Linux
build system

f

configuration

» root filesystem
image

>

kernel image
N bootloader
7 .

image(s)

> toolchain

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

40/46

Embedded Linux build system

Most popular build systems:

Yocto, based on OpenEmbedded: very powerful, flexible, smart, but complex, steep

learning curve
Buildroot: simpler, but less flexible and somewhat “dumb”

Everything is rebuilt from source
Good:
Flexibility in the tuning/optimization
Reproducibility
Smaller footprint: less packages, reduced dependencies
Generates an image to flash, not an installer
Cross-compilation: fast build machine, no development files on target

Less good:

Need to learn (but fun!)
Build time
Security updates good, but perhaps not as strong as Debian

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

41/46

Factory flashing and OTA

Factory flashing

Linux on embedded devices is not installed by users

Devices are flashed at the factory with an image of the Linux system
Image must be fully functional with all software installed and configured
Provisioning of MAC address, serial number, keys, etc.

The user doesn't even notice there's Linux underneath

Over-the-air updates

Old trend: ship device with a firmware, never touch it again
Now, devices must be updated

Fix bugs, security issues, deploy new features

Generally: image-based update, not package-based

Two read-only copies of the system + one data partition
Popular OTA solutions: RAUC, swupdate, Mender

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/46

S it
ecurity

Cyber-security regulations more and more strict

Defensive security
Secure boot: authenticate all software running on the device, only boot/run software
signed by the manufacturer

Encryption: protect the OS/application and/or the user data/configuration
Containers, virtualization

Mandatory access control: SELinux, AppArmor, etc.
Updates to fix vulnerabilities
Monitor CVEs

Long-term support in Linux kernel, Yocto, Buildroot
Deploy updates in the field
How often? Impact on testing, validation, certification?

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/46

Application development

An embedded Linux system is just a normal Linux system, with usually a smaller
selection of components

In terms of application development, developing on embedded Linux is exactly the
same as developing on a desktop Linux system
All existing skills can be re-used, without any particular adaptation
All languages, frameworks, libraries, can be integrated into the embedded Linux
system

Python, Rust, C++, Go, NodelS, etc.

Beware of the limits of your embedded hardware in terms of performance, storage
and memory

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/46

Want to get started?

Buy a hardware platform
NOT a RaspberryPi!

BeagleBoard: BeaglePlay (ARM64), Beagle-V (RISC-V)
STM32MP1 discovery kits

Plenty of inexpensive boards based on Allwinner or Rockchip processors
Build your embedded Linux system

Configure/build your bootloader
Configure/build your kernel

Build a custom system with Yocto/Buildroot
Explore hardware interfaces

Don't use vendor solutions/tools: use upstream Linux, upstream U-Boot,
upstream Yocto/Buildroot

Bootlin training materials available free of charge, including practical labs!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/46

Questions?

We're hiring:
Internships on embedded Linux topics
Embedded Linux/Linux kernel

QueStIOnS? engineers

Toulouse, Lyon, remote

Thomas Petazzoni
thomas@bootlin.com
https://bootlin.com

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/46

https://bootlin.com

	Discover and understand Embedded Linux
	Hardware
	Software

