
Capitole du Libre 2023

Discover and understand
Embedded Linux
Thomas Petazzoni
thomas.petazzoni@bootlin.com

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/46

 



Who is speaking?

Thomas Petazzoni
▶ Linux user since ≈1998
▶ Embedded Linux engineer since 2008
▶ CEO at Bootlin
▶ Co-maintainer of Buildroot
▶ 900+ patches in the Linux kernel
▶ Co-founder of Toulibre and Capitole

du Libre

Bootlin
▶ Embedded Linux expertise
▶ Engineering and training
▶ 80% of business outside of France
▶ 20 people
▶ 8000+ patches in the Linux kernel
▶ Strong open-source culture
▶ Freely available training materials

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/46

 



Why this talk?

▶ Most Linux users/developers are aware of Linux on desktops/servers
▶ But there’s another field where Linux is very widely used: embedded systems!
▶ Goal of the talks

• Show examples of embedded systems where Linux is used
• HW architecture of Linux-based embedded systems
• SW architecture of Linux-based embedded systems

▶ Ready?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/46

 



Wikipedia to the rescue

An embedded system is a computer system—a combination of a computer processor,
computer memory, and input/output peripheral devices—that has a dedicated function

within a larger mechanical or electronic system

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/46

 



Trend in embedded systems

▶ Increasing complexity / feature set
1. Purely analog electronics
2. Micro-controllers with bare-metal applications (no operating system) or relatively

simple real-time operating systems
3. Micro-processors to run a rich operating system (Linux!) to provide multimedia

features, connectivity, security, etc.
▶ Think about the evolution of TVs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/46

 



Agriculture

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/46

 



Sports

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/46

 



Electronic equipment

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/46

 



Coffee machine

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/46

 



Counting points at bridge games

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/46

 



Healthcare

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/46

 



Structural monitoring

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/46

 



Digital signage → advertising crap

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/46

 



Consumer devices: multimedia, home automation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/46

 



Gas filling station

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/46

 



Transportation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/46

 



Space

Falcon 9 image from NASA, under public domain

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/46

 



Discover and understand Embedded Linux

Hardware

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/46

 



Intel PC architecture

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/46

 



CPUs in embedded systems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/46

 



Concept of System-on-chip

▶ Integrate many HW features in a single chip: system on chip
• One or several CPU cores
• Many HW interfaces

Slow: GPIO, UART, I2C, SPI
High-speed: MMC/SDIO, PCIe, USB
Multimedia: parallel in/out, DSI, CSI, LVDS, HDMI, I2S

• Accelerators: crypto, video encoding/decoding, GPU, NPU
▶ Silicon vendors design chips by combining hardware blocks

• Purchased from IP vendors
• Designed internally

▶ IP vendors: ARM, SiFive, Cadence, Synopsys, etc.
▶ Silicon vendors: NXP, TI, Microchip, Marvell, Rockchip, Qualcomm, etc.
▶ Massive number of SoCs available, to address very different markets

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/46

 



SoC example: Microchip SAM9x60

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/46

 



SoC example: Rockchip RK3588

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/46

 



SoC example: Texas Instruments AM64

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/46

 



SoC example: Microchip Polarfire

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/46

 



Typical design of embedded hardware

▶ A custom board is typically designed for each embedded product
▶ A system-on-chip at its core
▶ RAM: DDR, LPDDR
▶ Storage: eMMC, SD, flash
▶ Display panel, sometimes a display bridge, a touchscreen controller
▶ Audio codec
▶ Camera sensor
▶ Ethernet PHY, Ethernet switch
▶ WiFi, Bluetooth chips, or other radio interfaces
▶ Power supplies, protections
▶ Connectors

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/46

 



Board example: Ikea smart home hub

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/46

 



Board example: Amazon Ring

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/46

 



Board block diagram: STM32MP135 evaluation board

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/46

 



FPGA and micro-controllers

▶ In Embedded Linux systems, Linux runs on application processors
▶ Some systems have special requirements

• Very tight real-time requirements
• Safety requirements
• Support of custom hardware interfaces

▶ Integration of
• Micro-controllers: to run bare-metal code / small real-time OS
• FPGA: to program custom hardware logic

▶ ... either ...
• Inside the system-on-chip
• or on the board

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/46

 



Discover and understand Embedded Linux

Software

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/46

 



Main development steps

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/46

 



Board Support Package development

▶ Making sure that the hardware is supported by the software
▶ Mostly affects the bootloader and Linux kernel
▶ Goal is to have all required hardware interfaces/features supported
▶ Requires

• Porting/adaptation
• Sometimes new drivers

▶ The hardware in each system-on-chip is often different: different drivers are
required

▶ The hardware in each board is often different: different drivers are required
▶ There is no such thing as “a kernel that works on ARM”

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/46

 



Board Support Package development

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/46

 



BSP development: starting point

▶ Ideally: the upstream Linux kernel, and an upstream bootloader has support for
your SoC, and one or several evaluation boards

▶ Less ideally: your silicon vendor provides a fork of Linux + bootloader that
includes support for your SoC, and one or several evaluation boards

• Less ideal because: generally not maintained over the long run, poor quality,
non-standard interfaces

▶ Even less ideally: what your silicon vendor provides is so crappy that you can’t use
it

• More work/effort for you

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/46

 



BSP development: your work

▶ Mainly: what is specific to the hardware on your board
▶ Your hardware often derived from a reference design/evaluation board
▶ Bootloader level

• DDR controller configuration, potentially a tricky part
• UART
• Storage: eMMC, SD, NAND flash
• Sometimes networking, or other peripherals depending on the use cases
• Always: Device Tree (description of HW) + configuration
• Sometimes: new drivers needed for on-board peripherals

▶ Linux kernel level
• All hardware features that are needed
• Always: Device Tree (description of HW) + configuration
• Sometimes: new drivers needed for on-board peripherals

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/46

 



Boot flow

▶ On x86
• UEFI firmware → GRUB bootloader → Linux kernel

▶ Most ARM 32-bit platforms
• ROM code → U-Boot bootloader → Linux kernel

▶ ARM 64-bit platforms (simplified)
• ROM code → Trusted Firmware → U-Boot bootloader → Linux kernel
• Sometimes a trusted operating system, such as OP-TEE
• Sometimes additional firmware, running on co-processors

▶ Bootloader is generally U-Boot, not Grub
▶ Exact boot flow is specific to the system-on-chip

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/46

 



System integration

▶ How do you integrate all the software components together?
• Bootloader
• Linux kernel
• Open-source components: systemd? Wayland? GStreamer? NetworkManager?

Python? NodeJS? Qt? Gtk? OpenCV? etc.
• In-house components: your libraries/services/applications

▶ Varying levels of complexity
• Some embedded Linux systems have a very simple software stack
• Some need very complex software stacks
• And everything in-between

▶ Two main options
• Binary distributions
• Embedded Linux build systems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/46

 



Binary distribution

▶ What you use on your desktop/server: Debian, Ubuntu, Fedora, RaspberryPi OS
▶ Provides

• Pre-compiled packages of many open-source software components
• Installer
• Configuration/integration

▶ Good:
• Easy to install, easy to install packages, well known
• Regular updates, including security

▶ Less good for embedded:
• Biased towards installation rather than factory install a pre-configured image
• Biased towards native compilation, and development on the target
• Difficult to have a reproducible image creation process
• Large, not easy to tweak/optimize, lots of mandatory dependencies

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/46

 



Embedded Linux build system

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/46

 



Embedded Linux build system

▶ Most popular build systems:
• Yocto, based on OpenEmbedded: very powerful, flexible, smart, but complex, steep

learning curve
• Buildroot: simpler, but less flexible and somewhat “dumb”

▶ Everything is rebuilt from source
▶ Good:

• Flexibility in the tuning/optimization
• Reproducibility
• Smaller footprint: less packages, reduced dependencies
• Generates an image to flash, not an installer
• Cross-compilation: fast build machine, no development files on target

▶ Less good:
• Need to learn (but fun!)
• Build time
• Security updates good, but perhaps not as strong as Debian

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/46

 



Factory flashing and OTA

▶ Factory flashing
• Linux on embedded devices is not installed by users
• Devices are flashed at the factory with an image of the Linux system
• Image must be fully functional with all software installed and configured
• Provisioning of MAC address, serial number, keys, etc.
• The user doesn’t even notice there’s Linux underneath

▶ Over-the-air updates
• Old trend: ship device with a firmware, never touch it again
• Now, devices must be updated
• Fix bugs, security issues, deploy new features
• Generally: image-based update, not package-based
• Two read-only copies of the system + one data partition
• Popular OTA solutions: RAUC, swupdate, Mender

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/46

 



Security

▶ Cyber-security regulations more and more strict
▶ Defensive security

• Secure boot: authenticate all software running on the device, only boot/run software
signed by the manufacturer

• Encryption: protect the OS/application and/or the user data/configuration
• Containers, virtualization
• Mandatory access control: SELinux, AppArmor, etc.

▶ Updates to fix vulnerabilities
• Monitor CVEs
• Long-term support in Linux kernel, Yocto, Buildroot
• Deploy updates in the field
• How often? Impact on testing, validation, certification?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/46

 



Application development

▶ An embedded Linux system is just a normal Linux system, with usually a smaller
selection of components

▶ In terms of application development, developing on embedded Linux is exactly the
same as developing on a desktop Linux system

▶ All existing skills can be re-used, without any particular adaptation
▶ All languages, frameworks, libraries, can be integrated into the embedded Linux

system
• Python, Rust, C++, Go, NodeJS, etc.
• Beware of the limits of your embedded hardware in terms of performance, storage

and memory

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/46

 



Want to get started?

▶ Buy a hardware platform
• NOT a RaspberryPi!
• BeagleBoard: BeaglePlay (ARM64), Beagle-V (RISC-V)
• STM32MP1 discovery kits
• Plenty of inexpensive boards based on Allwinner or Rockchip processors

▶ Build your embedded Linux system
• Configure/build your bootloader
• Configure/build your kernel
• Build a custom system with Yocto/Buildroot
• Explore hardware interfaces

▶ Don’t use vendor solutions/tools: use upstream Linux, upstream U-Boot,
upstream Yocto/Buildroot

▶ Bootlin training materials available free of charge, including practical labs!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/46

 



Questions?

Questions?

We’re hiring:
▶ Internships on embedded Linux topics
▶ Embedded Linux/Linux kernel

engineers
Toulouse, Lyon, remote

Thomas Petazzoni
thomas@bootlin.com
https://bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/46

 

https://bootlin.com

	Discover and understand Embedded Linux
	Hardware
	Software


