Free Electrons speaking at the Linux Collaboration Summit

Free Electrons engineers are regular speakers at the Embedded Linux Conference and Embedded Linux Conference Europe events from the Linux Foundation, to which our entire engineering team participates each year.

In 2016, for the first time, we will also be speaking at the Collaboration Summit, an invitation-only event where, as the Linux Foundation presents it, “the world’s thought leaders in open source software and collaborative development convene to share best practices and learn how to manage the largest shared technology investments of our time”.

Collaboration Summit 2016

This event will take place on March 29-31 in Lake Tahoe, California, and the event schedule has been published recently. Free Electrons CTO Thomas Petazzoni will be giving a talk Upstreaming hardware support in the Linux kernel: why and how?, during which we will share our experience working with HW manufacturers to bring the support for their hardware to the upstream Linux kernel, discuss the benefits of upstreaming, and best practices to work with upstream.

With a small team of engineers, Free Electrons has merged over the last few years thousands of patches in the official Linux kernel, and has several of its engineers having maintainer positions in the Linux kernel community. We are happy to take the opportunity of the Collaboration Summit to share some of our experience, and hopefully encourage and help other companies to participate upstream.

Posted in Conference | Tagged , , , , , | Leave a comment

Initial support for ARM64 Marvell Armada 7K/8K platform

Two weeks ago, we submitted the initial support for the Marvell Armada 3700, which was the first ARM64 platform that Free Electrons engineers contributed to the upstream Linux kernel.

Today, we submitted initial support for another Marvell ARM64 platform, the Armada 7K and Armada 8K platform. Compared to the Armada 3700, the Armada 7K and 8K are much more on the high-end side: they use a dual Cortex-A72 or a quad Cortex-A72, as opposed to the Cortex-A53 for the Armada 3700.

Marvell Armada 7KMarvell Armada 8K

The Armada 7K and 8K also use a fairly unique architecture, internally they are composed of several components:

  • One AP (Application Processor), which contains the processor itself and a few core hardware blocks. The AP used in the Armada 7K and 8K is called AP806, and is available in two configurations: dual Cortex-A72 and quad Cortex-A72.
  • One or two CP (Communication Processor), which contain most of the I/O interfaces (SATA, PCIe, Ethernet, etc.). The 7K family chips have one CP, while the 8K family chips integrate two CPs, providing two times the number of I/O interfaces available in the CP. The CP used in the 7K and 8K is called CP110.

All in all, this gives the following combinations:

  • Armada 7020, which is a dual Cortex-A72 with one CP
  • Armada 7040, which is a quad Cortex-A72 with one CP
  • Armada 8020, which is a dual Cortex-A72 with two CPs
  • Armada 8040, which is a quad Cortex-A72 with two CPs

So far, we submitted initial support only for the AP806 part of the chip, with the following patch series:

We will continue to submit more and more patches to support other features of the Armada 7K and 8K processors in the near future.

Posted in Technical | Tagged , , | Leave a comment

Factory flashing with U-Boot and fastboot on Freescale i.MX6

Introduction

For one of our customers building a product based on i.MX6 with a fairly low-volume, we had to design a mechanism to perform the factory flashing of each product. The goal is to be able to take a freshly produced device from the state of a brick to a state where it has a working embedded Linux system flashed on it. This specific product is using an eMMC as its main storage, and our solution only needs a USB connection with the platform, which makes it a lot simpler than solutions based on network (TFTP, NFS, etc.).

In order to achieve this goal, we have combined the imx-usb-loader tool with the fastboot support in U-Boot and some scripting. Thanks to this combination of a tool, running a single script is sufficient to perform the factory flashing, or even restore an already flashed device back to a known state.

The overall flow of our solution, executed by a shell script, is:

  1. imx-usb-loader pushes over USB a U-Boot bootloader into the i.MX6 RAM, and runs it;
  2. This U-Boot automatically enters fastboot mode;
  3. Using the fastboot protocol and its support in U-Boot, we send and flash each part of the system: partition table, bootloader, bootloader environment and root filesystem (which contains the kernel image).
The SECO uQ7 i.MX6 platform used for our project.

The SECO uQ7 i.MX6 platform used for our project.

imx-usb-loader

imx-usb-loader is a tool written by Boundary Devices that leverages the Serial Download Procotol (SDP) available in Freescale i.MX5/i.MX6 processors. Implemented in the ROM code of the Freescale SoCs, this protocol allows to send some code over USB or UART to a Freescale processor, even on a platform that has nothing flashed (no bootloader, no operating system). It is therefore a very handy tool to recover i.MX6 platforms, or as an initial step for factory flashing: you can send a U-Boot image over USB and have it run on your platform.

This tool already existed, we only created a package for it in the Buildroot build system, since Buildroot is used for this particular project.

Fastboot

Fastboot is a protocol originally created for Android, which is used primarily to modify the flash filesystem via a USB connection from a host computer. Most Android systems run a bootloader that implements the fastboot protocol, and therefore can be reflashed from a host computer running the corresponding fastboot tool. It sounded like a good candidate for the second step of our factory flashing process, to actually flash the different parts of our system.

Setting up fastboot on the device side

The well known U-Boot bootloader has limited support for this protocol:

The fastboot documentation in U-Boot can be found in the source code, in the doc/README.android-fastboot file. A description of the available fastboot options in U-Boot can be found in this documentation as well as examples. This gives us the device side of the protocol.

In order to make fastboot work in U-Boot, we modified the board configuration file to add the following configuration options:

#define CONFIG_CMD_FASTBOOT
#define CONFIG_USB_FASTBOOT_BUF_ADDR       CONFIG_SYS_LOAD_ADDR
#define CONFIG_USB_FASTBOOT_BUF_SIZE          0x10000000
#define CONFIG_FASTBOOT_FLASH
#define CONFIG_FASTBOOT_FLASH_MMC_DEV    0

Other options have to be selected, depending on the platform to fullfil the fastboot dependencies, such as USB Gadget support, GPT partition support, partitions UUID support or the USB download gadget. They aren’t explicitly defined anywhere, but have to be enabled for the build to succeed.

You can find the patch enabling fastboot on the Seco MX6Q uQ7 here: 0002-secomx6quq7-enable-fastboot.patch.

U-Boot enters the fastboot mode on demand: it has to be explicitly started from the U-Boot command line:

U-Boot> fastboot

From now on, U-Boot waits over USB for the host computer to send fastboot commands.

Using fastboot on the host computer side

Fastboot needs a user-space program on the host computer side to talk to the board. This tool can be found in the Android SDK and is often available through packages in many Linux distributions. However, to make things easier and like we did for imx-usb-loader, we sent a patch to add the Android tools such as fastboot and adb to the Buildroot build system. As of this writing, our patch is still waiting to be applied by the Buildroot maintainers.

Thanks to this, we can use the fastboot tool to list the available fastboot devices connected:

# fastboot devices

Flashing eMMC partitions

For its flashing feature, fastboot identifies the different parts of the system by names. U-Boot maps those names to the name of GPT partitions, so your eMMC normally requires to be partitioned using a GPT partition table and not an old MBR partition table. For example, provided your eMMC has a GPT partition called rootfs, you can do:

# fastboot flash rootfs rootfs.ext4

To reflash the contents of the rootfs partition with the rootfs.ext4 image.

However, while using GPT partitioning is fine in most cases, i.MX6 has a constraint that the bootloader needs to be at a specific location on the eMMC that conflicts with the location of the GPT partition table.

To work around this problem, we patched U-Boot to allow the fastboot flash command to use an absolute offset in the eMMC instead of a partition name. Instead of displaying an error if a partition does not exists, fastboot tries to use the name as an absolute offset. This allowed us to use MBR partitions and to flash at defined offset our images, including U-Boot. For example, to flash U-Boot, we use:

# fastboot flash 0x400 u-boot.imx

The patch adding this work around in U-Boot can be found at 0001-fastboot-allow-to-flash-at-a-given-address.patch. We are working on implementing a better solution that can potentially be accepted upstream.

Automatically starting fastboot

The fastboot command must be explicitly called from the U-Boot prompt in order to enter fastboot mode. This is an issue for our use case, because the flashing process can’t be fully automated and required a human interaction. Using imx-usb-loader, we want to send a U-Boot image that automatically enters fastmode mode.

To achieve this, we modified the U-Boot configuration, to start the fastboot command at boot time:

#define CONFIG_BOOTCOMMAND "fastboot"
#define CONFIG_BOOTDELAY 0

Of course, this configuration is only used for the U-Boot sent using imx-usb-loader. The final U-Boot flashed on the device will not have the same configuration. To distinguish the two images, we named the U-Boot image dedicated to fastboot uboot_DO_NOT_TOUCH.

Putting it all together

We wrote a shell script to automatically launch the modified U-Boot image on the board, and then flash the different images on the eMMC (U-Boot and the root filesystem). We also added an option to flash an MBR partition table as well as flashing a zeroed file to wipe the U-Boot environment. In our project, Buildroot is being used, so our tool makes some assumptions about the location of the tools and image files.

Our script can be found here: flash.sh. To flash the entire system:

# ./flash.sh -a

To flash only certain parts, like the bootloader:

# ./flash.sh -b 

By default, our script expects the Buildroot output directory to be in buildroot/output, but this can be overridden using the BUILDROOT environment variable.

Conclusion

By assembling existing tools and mechanisms, we have been able to quickly create a factory flashing process for i.MX6 platforms that is really simple and efficient. It is worth mentioning that we have re-used the same idea for the factory flashing process of the C.H.I.P computer. On the C.H.I.P, instead of using imx-usb-loader, we have used FEL based booting: the C.H.I.P indeed uses an Allwinner ARM processor, providing a different recovery mechanism than the one available on i.MX6.

Posted in Technical | Tagged , , , , , , , | 1 Comment

Free Electrons contributes Linux support for a first ARM64 platform: Marvell Armada 3700

Marvell Armada 3700Over the last years, Free Electrons has become a strong participant to the Linux ARM kernel community, with our engineers upstreaming support for numerous ARM 32 bits platforms.

Now, with ARM64 becoming more and more mainstream, our focus in 2016 will shift towards this architecture, and we’re happy to announce that we have recently contributed to the upstream Linux kernel the initial support for our first ARM64 architecture: the Marvell Armada 3700.

This new SoC from Marvell is available in single-core and dual-core Cortex-A53 configurations, and features a wide range of peripherals: 2 Gigabit Ethernet controllers, USB 3.0 and 2.0, SATA, PCIe interfaces, DMA engines for XOR acceleration, and of course the usual SPI, I2C, UART, GPIO, SDIO interfaces. For more details, see the Product Brief.

So far, we have sent a patch series adding minimal support for this platform:

  • A UART driver, since this SoC uses a new specific UART controller
  • Small changes to an AHCI driver to support SATA.
  • The Device Tree files describing the SoC and the currently available development board. So far, only the CPU, timers, UART0, USB 3.0, SATA and GIC interrupt controllers are described.

A second version of the patch series was sent a few days later, in order to address comments received during the review.

It is worth mentioning that this SoC was publicly announced in a press release on January 6 2016, and we’ve been able to send the initial support patches on February 2, 2016, less than a month later.

We’ll be progressively submitting support for all the other hardware blocks of the Armada 3700, and also be announcing soon our development efforts on several other ARM64 platforms.

Posted in Technical | Tagged , , , , | Leave a comment

2016 Q1 newsletter

Newsletter iconThis article was published on our quarterly newsletter.

The Free Electrons team wishes you a Happy New Year for 2016, with many new bits to enjoy in your life!

Free Electrons is happy to take this opportunity to share some news about the latest training and contribution activities of the company.

Free Electrons work on the $9 computer

As announced in our previous newsletter, Free Electrons has been working intensively on developing the low-level software support for the first $9 computer, the C.H.I.P by Next Thing Co.

Next Thing Co. has successfully delivered an initial batch of platforms in September to the early adopters, and has started shipping the final products in December to thousands of Kickstarter supporters.

Those products are using the U-Boot and Linux kernel ported by Free Electrons engineers, with numerous patches submitted to the official projects and more to be submitted in the coming weeks and months:

  • Support for the C.H.I.P platform itself, in U-Boot and in the Linux kernel;
  • Support for audio on Allwinner platforms added to the Linux kernel;
  • Development of a DRM/KMS driver for the graphics controller found on Allwinner platforms;
  • Significant research effort on finding appropriate solutions to support Multi-Level Cell NANDs in the Linux kernel;
  • Enabling of the NAND storage in Single-Level Cell mode, until the Multi-Level Cell mode can be enabled reliably;
  • Addition of NAND support in the fastboot implementation of U-Boot, which is used to reflash the C.H.I.P.

We will continue to work on the C.H.I.P over the next months, with among other things more work on the graphics side and the NAND side.

Kernel contributions

The primary focus of the majority of our customer projects remain the Linux kernel, to which we continue to contribute very significantly.

Linux 4.2

We contributed 203 patches to this release, with a new IIO driver for the ADC found on Marvell Berlin platforms, a big cleanup to the support of Atmel platforms, improvements to the DMA controller driver for Atmel platforms, a completely new driver for the cryptographic accelerator found on Marvell EBU platforms.

In this cycle, our engineer Alexandre Belloni became the official maintainer of the RTC subsystem.

See details on our contributions to Linux 4.2

Linux 4.3

We contributed 110 patches to this release, with mainly improvements to the DRM/KMS driver and DMA controller driver for Atmel platforms and power management improvements for Marvell platforms.

See details on our contributions to Linux 4.3

Linux 4.4

We contributed 112 patches to this release, the main highlights being an additional RTC driver, a PWM driver, support for the C.H.I.P platform, and improvements to the NAND support.

See details on our contributions to Linux 4.4

Work on ARM 64-bit platform

We have started to work on supporting the Linux kernel on several ARM 64 bits platforms from different vendors. We will be submitting the initial patches in the coming weeks and will progressively improve the support for those platforms throughout 2016 where a major part of our Linux kernel contribution effort will shift to ARM 64-bit.

Growing engineering team

Our engineering team, currently composed of six engineers, will be significantly expanded in 2016:

  • Two additional embedded Linux engineers will join us in March 2016 and will be working with our engineering team in Toulouse, France. They will help us on our numerous Linux kernel and Linux BSP projects.
  • An engineering intern will join us starting early February, and will work on setting up a board farm to contribute to the kernelci.org automated testing effort. This will help us do more automated testing on the ARM platforms we work on.

Upcoming training sessions

We have public training sessions scheduled for the beginning of 2016:

Embedded Linux development training
February 29 – March 4, in English, in Avignon (France)
Embedded Linux kernel and driver development training
March 14-18, in English, in Avignon (France)
Android system development training
March 7-10, in English, in Toulouse (France)

We also offer the following training courses, on-site, anywhere in the world, upon request:

Contact us at training@free-electrons.com for details.

Conferences

We participated to the Embedded Linux Conference Europe in Dublin in October 2015, and gave a number of talks:

In addition, our engineer Thomas Petazzoni was invited to the Linux Kernel Summit, an invitation-only conference for the kernel maintainers and developers. He participated to the three days event in Seoul, South Korea. See Free Electrons at the Linux Kernel Summit 2015.

At the beginning of 2016, our entire engineering team will be attending the Embedded Linux Conference in San Diego (US), which means that no less than 9 engineers from Free Electrons will be present at the conference!

Porting Linux on ARM seminar

In December 2015, we gave a half-day seminar entitled “Porting Linux on ARM” in Toulouse (France). The materials, in English, are now freely available on our web site.

Posted in News | Tagged , , , , , , , , , | Leave a comment

ELCE 2015 conference videos available

ELC Europe 2015 logoAs often in the recent years, the Linux Foundation has shot videos of most of the talks at the Embedded Linux Conference Europe 2015, in Dublin last October.

These videos are now available on YouTube, and individual links are provided on the elinux.org wiki page that keeps track of presentation materials as well. You can also find them all through the Embedded Linux Conference Europe 2015 playlist on YouTube.

All this is of course a priceless addition to the on-line slides. We hope these talks will incite you to participate to the next editions of the Embedded Linux Conference, like in San Diego in April, or in Berlin in October this year.

In particular, here are the videos from the presentations from Free Electrons engineers.

Alexandre Belloni, Supporting multi-function devices in the Linux kernel

Kernel maintainership: an oral tradition

Tutorial: learning the basics of Buildroot

Our CTO Thomas Petazzoni also gave a keynote (Linux kernel SoC mainlining: Some success factors), which was well attended. Unfortunately, like for some of the other keynotes, no video is available.

Posted in Technical | Tagged , | Leave a comment

Seminar “Porting Linux on an ARM board”, materials available

Porting Linux on an ARM boardOn December 10th 2015, Free Electrons engineer Alexandre Belloni gave a half-day seminar on the topic of Porting Linux on an ARM board in Toulouse, France. This seminar covers topics like porting the bootloader, understanding the concept of the Device Tree, writing Linux device drivers and more. With ~50 persons from various companies attending and lots of questions from the audience, this first edition has been very successful, which shows an increasing interest for using Linux on ARM platforms in the industry.

We are now publishing the 220 slides materials from this seminar, available in PDF format. Like all our training materials, this material is published under the Creative Commons BY-SA 3.0 license, which allows everyone to re-use it for free, provided the derivative works are released under the same license. We indeed re-used quite extensively parts of our existing training materials for this half-day seminar.

We plan to give this half-day seminar in other locations in France in 2016. Contact us if you are interested in organizing a similar seminar in your area (we are happy to travel!).

Posted in Conference, Technical | Tagged , , , , , , , | Leave a comment

Device Tree on ARM article in French OpenSilicium magazine

Our French readers are most likely aware of the existence of a magazine called OpenSilicium, a magazine dedicated to embedded technologies, with frequent articles on platforms like the Raspberry Pi, the BeagleBone Black, topics like real-time, FPGA, Android and many others.

Open Silicium #17

Issue #17 of the magazine has been published recently, and features a 14-pages long article Introduction to the Device Tree on ARM, written by Free Electrons engineer Thomas Petazzoni.

Open Silicium #17

Besides Thomas article, many other topics are covered in this issue:

  • A summary of the Embedded Linux Conference Europe 2015 in Dublin
  • Icestorm, a free development toolset for FPGA
  • Using the Armadeus APF27 board with Yocto
  • Set up an embedded Linux system on the Zynq ZedBoard
  • Debugging with OpenOCD and JTAG
  • Usage of the mbed SDK on a small microcontroller, the LPC810
  • From Javascript to VHDL, the art of writing synthetizable code using an imperative language
  • Optimization of the 3R strems decompression algorithm
Posted in Technical | Tagged , , | 1 Comment

Free Electrons at FOSDEM and the Buildroot Developers Meeting

FOSDEM 2016The FOSDEM conference will take place on January 30-31 in Brussels, Belgium. Like every year, there are lots of interesting talks for embedded developers, starting from the Embedded, Mobile and Automotive Devroom, but also the Hardware track, the Graphics track. Some talks of the IoT and Security devrooms may also be interesting to embedded developers.

Thomas Petazzoni, embedded Linux engineer and CTO at Free Electrons, will be present during the FOSDEM conference. Thomas will also participate to the Buildroot Developers Meeting that will take place on February 1-2 in Brussels, hosted by Google.

Posted in Conference, Technical | Tagged , , | Leave a comment

Linux 4.4, Free Electrons contributions

Linux 4.4 is the latest releaseLinux 4.4 has been released, a week later than the normal schedule in order to allow kernel developers to recover from the Christmas/New Year period. As usual, LWN has covered the 4.4 cycle merge window, in two articles: part 1 and part 2. This time around, KernelNewbies has a nice overview of the Linux 4.4 changes. With 112 patches merged, we are the 20th contributing company by number of patches according to the statistics.

Besides our contributions in terms of patches, some of our engineers have also become over time maintainers of specific areas of the Linux kernel. Recently, LWN.net conducted a study of how the patches merged in 4.4 went into the kernel, which shows the chain of maintainers who pushed the patches up to Linus Torvalds. Free Electrons engineers had the following role in this chain of maintainers:

  • As a co-maintainer of the Allwinner (sunxi) ARM support, Maxime Ripard has submitted a pull request with one patch to the clock maintainers, and pull requests with a total of 124 patches to the ARM SoC maintainers.
  • As a maintainer of the RTC subsystem, Alexandre Belloni has submitted pull requests with 30 patches directly to Linus Torvalds.
  • As a co-maintainer of the AT91 ARM support, Alexandre Belloni has submitted pull requests with 46 patches to the ARM SoC maintainers.
  • As a co-maintainer of the Marvell EBU ARM support, Gregory Clement has submitted pull requests with a total of 33 patches to the ARM SoC maintainers.

Our contributions for the 4.4 kernel were centered around the following topics:

  • Alexandre Belloni continued some general improvements to support for the AT91 ARM processors, with fixes and cleanups in the at91-reset, at91-poweroff, at91_udc, atmel-st, at91_can drivers and some clock driver improvements.
  • Alexandre Belloni also wrote a driver for the RV8803 RTC from Microcrystal.
  • Antoine Ténart added PWM support for the Marvell Berlin platform and enabled the use of cpufreq on this platform.
  • Antoine Ténart did some improvements in the pxa3xx_nand driver, still in preparation to the addition of support for the Marvell Berlin NAND controller.
  • Boris Brezillon did a number of improvements to the sunxi_nand driver, used for the NAND controller found on the Allwinner SoCs. Boris also merged a few patches doing cleanups and improvements to the MTD subsystem itself.
  • Boris Brezillon enabled the cryptographic accelerator on more Marvell EBU platforms by submitting the corresponding Device Tree descriptions, and he also fixed a few bugs found in the driver
  • Maxime Ripard reworked the interrupt handling of per-CPU interrupts on Marvell EBU platforms especially in the mvneta network driver. This was done in preparation to enable RSS support in the mvneta driver.
  • Maxime Ripard added support for the Allwinner R8 and the popular C.H.I.P platform.
  • Maxime Ripard enabled audio support on a number of Allwinner platforms, by adding the necessary clock code and Device Tree descriptions, and also several fixes/improvements to the ALSA driver.

The details of our contributions for 4.4:

Posted in Technical | Tagged , , , | Leave a comment