
Android System Development

Android System
Development

© Copyright 2004-2019, Bootlin.
Creative Commons BY-SA 3.0 license.
Latest update: February 15, 2019.

Document updates and sources:
https://bootlin.com/doc/training/android

Corrections, suggestions, contributions and translations are welcome!
Send them to feedback@bootlin.com

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/444

https://bootlin.com/doc/training/android
mailto:feedback@bootlin.com

Rights to copy

© Copyright 2004-2019, Bootlin
License: Creative Commons Attribution - Share Alike 3.0
https://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free:

▶ to copy, distribute, display, and perform the work
▶ to make derivative works
▶ to make commercial use of the work

Under the following conditions:
▶ Attribution. You must give the original author credit.
▶ Share Alike. If you alter, transform, or build upon this work, you may distribute

the resulting work only under a license identical to this one.
▶ For any reuse or distribution, you must make clear to others the license terms of

this work.
▶ Any of these conditions can be waived if you get permission from the copyright

holder.
Your fair use and other rights are in no way affected by the above.

Document sources: https://github.com/bootlin/training-materials/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/444

https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://github.com/bootlin/training-materials/

Hyperlinks in the document

There are many hyperlinks in the document
▶ Regular hyperlinks:

https://kernel.org/

▶ Kernel documentation links:
dev-tools/kasan

▶ Links to kernel source files and directories:
drivers/input/
include/linux/fb.h

▶ Links to the declarations, definitions and instances of kernel
symbols (functions, types, data, structures):
platform_get_irq()
GFP_KERNEL
struct file_operations

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/444

https://kernel.org/
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://elixir.bootlin.com/linux/latest/source/drivers/input/
https://elixir.bootlin.com/linux/latest/source/include/linux/fb.h
https://elixir.bootlin.com/linux/latest/ident/platform_get_irq
https://elixir.bootlin.com/linux/latest/ident/GFP_KERNEL
https://elixir.bootlin.com/linux/latest/ident/file_operations

Company at a glance

▶ Engineering company created in 2004,
named ”Free Electrons” until February 2018.

▶ Locations: Orange, Toulouse, Lyon (France)
▶ Serving customers all around the world
▶ Head count: 13

Only Free Software enthusiasts!
▶ Focus: Embedded Linux, Linux kernel, build systems and low

level Free and Open Source Software for embedded and
real-time systems.

▶ Activities: development, training, consulting, technical
support.

▶ Added value: get the best of the user and development
community and the resources it offers.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/444

Bootlin on-line resources

▶ All our training materials and technical presentations:
https://bootlin.com/docs/

▶ Technical blog:
https://bootlin.com/blog/

▶ News and discussions (LinkedIn):
https://www.linkedin.com/groups/4501089

▶ Quick news (Twitter):
https://twitter.com/bootlincom

▶ Elixir - browse Linux kernel sources on-line:
https://elixir.bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/444

https://bootlin.com/docs/
https://bootlin.com/blog/
https://www.linkedin.com/groups/4501089
https://twitter.com/bootlincom
https://elixir.bootlin.com

Generic course information

Generic course
information

© Copyright 2004-2019, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/444

Hardware used in this training session

BeagleBone Black, from CircuitCo

▶ Texas Instruments AM335x (ARM Cortex-A8
CPU)

▶ SoC with 3D acceleration, additional
processors (PRUs) and lots of peripherals.

▶ 512 MB of RAM
▶ 4 GB of on-board eMMC storage
▶ Ethernet, USB host and USB device,

microSD, micro HDMI
▶ 2 x 46 pins headers, with access to many

expansion buses (I2C, SPI, UART and more)
▶ A huge number of expansion boards, called

capes. See
https://elinux.org/Beagleboard:
BeagleBone_Capes.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/444

https://elinux.org/Beagleboard:BeagleBone_Capes
https://elinux.org/Beagleboard:BeagleBone_Capes

Course outline - Day 1

Building Android
▶ Introduction to Android
▶ Getting Android sources
▶ Building and booting Android
▶ Introduction to the Linux kernel
▶ Compiling and booting the Linux kernel

Labs: download Android sources, compile them and boot them
with the Android emulator. Recompile the Linux kernel.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/444

Course outline - Day 2

Android kernel, boot and filesystem details
▶ Android changes to the Linux kernel
▶ Android bootloaders
▶ Booting Android
▶ Using ADB
▶ Android filesystem

Labs: customize, compile and boot Android for the BeagleBone
Black board.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/444

Course outline - Day 3

Supporting a new product and customizing it
▶ Android build system. Add a new module and product.
▶ Android native layer - Bionic, Toolbox, init, various daemons,

Dalvik, hardware abstraction, JNI...
Labs: Use ADB, create a new product, customize the product for
the BeagleBone Black board.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/444

Course outline - Day 4

Android framework and applications
▶ Android framework for applications
▶ Introduction to application development
▶ Android packages
▶ Advise and resources

Labs: compile an external library and a native application to
control a USB missile launcher. Create a JNI library and develop
an Android application to control the device.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/444

Participate!

During the lectures...
▶ Don’t hesitate to ask questions. Other people in the audience

may have similar questions too.
▶ This helps the trainer to detect any explanation that wasn’t

clear or detailed enough.
▶ Don’t hesitate to share your experience, for example to

compare Linux with other operating systems used in your
company.

▶ Your point of view is most valuable, because it can be similar
to your colleagues’ and different from the trainer’s.

▶ Your participation can make our session more interactive and
make the topics easier to learn.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/444

Practical lab guidelines

During practical labs...
▶ We cannot support more than 8 workstations at once (each

with its board and equipment). Having more would make the
whole class progress slower, compromising the coverage of the
whole training agenda (exception for public sessions: up to 10
people).

▶ So, if you are more than 8 participants, please form up to 8
working groups.

▶ Open the electronic copy of your lecture materials, and use it
throughout the practical labs to find the slides you need again.

▶ Don’t hesitate to copy and paste commands from the PDF
slides and labs.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/444

Advise: write down your commands!

During practical labs, write down all your commands in a text file.
▶ You can save a lot of time re-using

commands in later labs.
▶ This helps to replay your work if

you make significant mistakes.
▶ You build a reference to remember

commands in the long run.
▶ That’s particular useful to keep

kernel command line settings that
you used earlier.

▶ Also useful to get help from the
instructor, showing the commands
that you run.

gedit ~/lab-history.txt

Booting kernel through tftp:
setenv bootargs console=ttyS0 root=/dev/nfs
setenv bootcmd tftp 0x21000000 zImage; tftp
0x22000000 dtb; bootz 0x21000000 - 0x2200...

Lab commands

Cross-compiling kernel:
export ARCH=arm
export CROSS_COMPILE=arm-linux-
make sama5_defconfig

Making ubifs images:
mkfs.ubifs -d rootfs -o root.ubifs -e 124KiB
-m 2048 -c 1024

Encountered issues:
Restart NFS server after editing /etc/exports!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/444

Cooperate!

As in the Free Software and Open Source community, cooperation
during practical labs is valuable in this training session:
▶ If you complete your labs before other people, don’t hesitate

to help other people and investigate the issues they face. The
faster we progress as a group, the more time we have to
explore extra topics.

▶ Explain what you understood to other participants when
needed. It also helps to consolidate your knowledge.

▶ Don’t hesitate to report potential bugs to your instructor.
▶ Don’t hesitate to look for solutions on the Internet as well.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/444

Command memento sheet

▶ This memento sheet gives
command examples for the most
typical needs (looking for files,
extracting a tar archive...)

▶ It saves us 1 day of UNIX / Linux
command line training.

▶ Our best tip: in the command line
shell, always hit the Tab key to
complete command names and file
paths. This avoids 95% of typing
mistakes.

▶ Get an electronic copy on
https://bootlin.com/doc/
legacy/command-
line/command_memento.pdf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/444

https://bootlin.com/doc/legacy/command-line/command_memento.pdf
https://bootlin.com/doc/legacy/command-line/command_memento.pdf
https://bootlin.com/doc/legacy/command-line/command_memento.pdf

vi basic commands

▶ The vi editor is very useful to
make quick changes to files in an
embedded target.

▶ Though not very user friendly at
first, vi is very powerful and its
main 15 commands are easy to
learn and are sufficient for 99% of
everyone’s needs!

▶ Get an electronic copy on https:
//bootlin.com/doc/legacy/
command-line/vi_memento.pdf

▶ You can also take the quick tutorial
by running vimtutor. This is a
worthy investment!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/444

https://bootlin.com/doc/legacy/command-line/vi_memento.pdf
https://bootlin.com/doc/legacy/command-line/vi_memento.pdf
https://bootlin.com/doc/legacy/command-line/vi_memento.pdf

Practical lab - Training Setup

Prepare your lab environment
▶ Download and extract the lab

archive

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/444

Introduction to Android

Introduction to
Android

© Copyright 2004-2019, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/444

Introduction to Android

Features

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/444

Features

▶ All you can expect from a modern mobile OS:
▶ Application ecosystem, allowing to easily add and remove

applications and publish new features across the entire system
▶ Support for all the web technologies, with a browser built on

top of the well-established Blink rendering engine
▶ Support for hardware accelerated graphics through OpenGL ES
▶ Support for all the common wireless mechanisms: GSM,

CDMA, UMTS, LTE, Bluetooth, WiFi, NFC.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/444

Introduction to Android

History

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/444

Early Years

▶ Began as a start-up in Palo Alto, CA, USA in 2003
▶ Focused from the start on software for mobile devices
▶ Very secretive at the time, even though founders achieved a

lot in the targeted area before founding it
▶ Finally bought by Google in 2005
▶ Andy Rubin, founder of Android, Inc was also CEO of Danger,

Inc, a company producing one of the early smartphones, the
Sidekick

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/444

Opening Up

▶ Google announced the Open Handset Alliance in 2007, a
consortium of major actors in the mobile area built around
Android
▶ Hardware vendors: Intel, Texas Instruments, Qualcomm,

Nvidia, etc.
▶ Software companies: Google, eBay, etc.
▶ Hardware manufacturers: Motorola, HTC, Sony Ericsson,

Samsung, etc.
▶ Mobile operators: T-Mobile, Telefonica, Vodafone, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/444

Android Open Source Project (AOSP)

▶ At every new version, Google releases its source code through
this project so that community and vendors can work with it.
▶ One major exception: Honeycomb has not been released

because Google stated that its source code was not clean
enough to release it.

▶ One can fetch the source code and contribute to it, even
though the development process is very locked by Google

▶ Only a few devices are supported through AOSP though, only
the two most recent Android development phones and tablets
(part of the Nexus brand) and the pandaboard

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/444

Android Releases

▶ Each new version is given a dessert name
▶ Released in alphabetical order
▶ Latest releases:

▶ Android 2.3 Gingerbread
▶ Android 3.X Honeycomb
▶ Android 4.0 Ice Cream Sandwich
▶ Android 4.1/4.2/4.3 Jelly Bean
▶ Android 4.4 KitKat

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/444

Android Versions

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/444

Introduction to Android

Architecture

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/444

Architecture

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/444

The Linux Kernel

▶ Used as the foundation of the Android system
▶ Numerous additions from the stock Linux, including new IPC

(Inter-Process Communication) mechanisms, alternative
power management mechanism, new drivers and various
additions across the kernel

▶ These changes are beginning to go into the staging/ area of
the kernel, as of 3.3, after being a complete fork for a long
time

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/444

Android Libraries

▶ Gather a lot of Android-specific libraries to interact at a
low-level with the system, but third-parties libraries as well

▶ Bionic is the C library, SurfaceManager is used for drawing
surfaces on the screen, etc.

▶ But also Blink, SQLite, OpenSSL coming from the free
software world

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/444

Android Runtime

Handles the execution of Android applications
▶ Almost entirely written from scratch by Google
▶ Contains Dalvik, the virtual machine that executes every

application that you run on Android, and the core library for
the Java runtime, coming from Apache Harmony project

▶ Also contains system daemons, init executable, basic binaries,
etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/444

Android Framework

▶ Provides an API for developers to create applications
▶ Exposes all the needed subsystems by providing an abstraction
▶ Allows to easily use databases, create services, expose data to

other applications, receive system events, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/444

Android Applications

▶ AOSP also comes with a set of applications such as the phone
application, a browser, a contact management application, an
email client, etc.

▶ However, the Google apps and the Android Market app aren’t
free software, so they are not available in AOSP. To obtain
them, you must contact Google and pass a compatibility test.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/444

Introduction to Android

Hardware Requirements for Android

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/444

Android Hardware Requirements

▶ Google produces a document updated every new Android
version called the Compatibility Definition Document (CDD).

▶ This document provides all the information you need on the
expectations Google have about what should be an Android
device

▶ It details both the hardware and the global behaviour of the
system.

▶ While nothing forces you to follow that document if you don’t
care about the Google applications, it usually gives a good
idea of the current hardware requirements.

▶ We’ll be detailing the requirements for KitKat
▶ http://source.android.com/compatibility/android-

cdd.pdf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/444

http://source.android.com/compatibility/android-cdd.pdf
http://source.android.com/compatibility/android-cdd.pdf

SoC requirements

▶ Since Android in itself is quite huge, the hardware required is
quite powerful.

▶ Unlike Linux, Android officially supports only a few
architectures
▶ ARM v7a (basically, all the SoCs based on the Cortex-A CPUs)
▶ x86
▶ MIPS

▶ You also need to have a powerful enough GPU with OpenGL
ES support. Latest versions of Android require the 3D
hardware acceleration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/444

Storage and RAM needed

▶ The required RAM size is also quite huge, 340MB are required
for the kernel and user space memory

▶ Required storage is quite huge as well. An image of the
system is around 200-300MB, and you must have 350MB of
data space for the user plus 1GB of shared storage for the
applications.

▶ This is the minimum, and Google actually strongly suggest to
have at least 2GB dedicated to the applications in order to be
able to upgrade to a later version

▶ Google recommends to use block devices for storage and not
flash devices.

▶ The shared space has to be accessible from a host computer
by some way, like NFS, USB Mass Storage, MTP, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/444

External Peripherals 1/2

▶ No form of communication supported is mandatory, but you
need at least one form of data networking with a throughput
of at least 200 kbit per second.

▶ You will also need obviously a rather large screen with a
pointer device, presumably a touchscreen.

▶ Screens supported must have a screen size of at least 2.5
inches, with a minimal resolution of 426x320, with a ratio
between 4:3 and 16:9 and with a color depth of at least 16bits.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/444

External Peripherals 2/2

▶ Sensors are not mandatory, but depending of the class of
sensors, they are:
▶ Recommended

▶ Accelerometer
▶ Magnetometer
▶ GPS
▶ Gyroscope

▶ Optional
▶ Barometer
▶ Photometer
▶ Proximity Sensor

▶ Optional but discouraged
▶ Thermometer

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/444

Unusual Android Devices: Nook E-Book Reader

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/444

Unusual Android Devices: Portable Console

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/444

Unusual Android Devices: Microwave Oven

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/444

Unusual Android Devices: Treadmill

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/444

When to choose Android

▶ All of the requirements listed above are only if you want to be
eligible to the Android Play Store

▶ If you don’t want to get the store, you can obviously ignore
these

▶ However, Android really makes sense in a system that has at
least:
▶ A large screen
▶ A powerful SoC, with several CPUs, plenty of RAM and

storage space (around 2GB) and a decent GPU
▶ This is not an advisable choice when you want to build a

headless system, or a cheap system with limited resources
▶ In this case, a regular Linux system is definitely more

appropriate. It will save you engineering costs, reduce the
price of your hardware, and bring the same set of features you
could expect from a headless Android

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/444

Practical lab - Android Source Code

▶ Install all the development
packages needed to fetch and
compile Android

▶ Download the repo utility
▶ Use repo to download the source

code for Android and for all its
components

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/444

Android Source Code and Compilation

Android Source
Code and
Compilation

© Copyright 2004-2019, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/444

Android Source Code and Compilation

How to get the source code

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/444

Source Code Location

▶ The AOSP project is available at
http://source.android.com

▶ On this site, along with the code, you will find some resources
such as technical details, how to setup a machine to build
Android, etc.

▶ The source code is split into several Git repositories for
version control. But as there is a lot of source code, a single
Git repository would have been really slow

▶ Google split the source code into a one Git repository per
component

▶ You can easily browse these git repositories using
https://code.google.com/p/android-source-
browsing/source/browse/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/444

http://source.android.com
https://code.google.com/p/android-source-browsing/source/browse/
https://code.google.com/p/android-source-browsing/source/browse/

Source code licenses

▶ Mostly two kind of licenses:
▶ GPL/LGPL Code: Linux
▶ Apache/BSD: All the rest
▶ In the external folder, it depends on the component

▶ While you might expect Google’s apps for Android, like the
Android Market (now called Google Play Store), to be in the
AOSP as well, these are actually proprietary and you need to
be approved by Google to get them.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/444

Repo

▶ This makes hundreds of Git repositories
▶ To avoid making it too painful, Google also created a tool:

repo

▶ Repo aggregates these Git repositories into a single folder
from a manifest file describing how to find these and how to
put them together

▶ Also aggregates some common Git commands such as diff or
status that are run across all the Git repositories

▶ You can also execute a shell command in each repository
managed by Repo using the repo forall command

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/444

Repo’s manifest

▶ repo relies on a git repository that will contain XML files
called manifests

▶ These manifests gives the information about where to
download some source code and where to store it. It can also
provide some additional and optional information such as a
revision to use, an alternative server to download from, etc.

▶ The main manifests are stored in this git repo, and are shared
between all the users, but you can add some local manifests.

▶ repo will also use any XML file that is under
.repo/local_manifests

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/444

Manifests syntax

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

<remote name="github"
fetch="https://github.com/" />

<default remote="github" />

<project name="foo/bar" path="device/foo/bar" revision="v14.42" />

<remove-project name="foo/bar" />
</manifest>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/444

Android Source Code and Compilation

Source code organization

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/444

Source Code organization 1/3

▶ Once the source code is downloaded, you will find several
folders in it

bionic/ is where Android’s standard C library is stored
bootable/ contains code samples regarding the boot of an

Android device. In this folder, you will find the
protocol used by all Android bootloaders and a
recovery image

build/ holds the core components of the build system
cts/ The Compatibility Test Suite

dalvik/ contains the source code of the Dalvik virtual
machine

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/444

Source Code Organization 2/3

development/ holds the development tools, debug applications,
API samples, etc

device/ contains the device-specific components
docs/ contains HTML documentation hosted at

http://source.android.com

external/ is one of the largest folders in the source code, it
contains all the external projects used in the Android
code

frameworks/ holds the source code of the various parts of the
framework

hardware/ contains all the hardware abstraction layers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/444

http://source.android.com

Source Code Organization 3/3

libcore/ is the Java core library
libnativehelper/ contains a few JNI helpers for the Android base

classes
ndk/ is the place where you will find the Native

Development Kit, which allows to build native
applications for Android

packages/ contains the standard Android applications
prebuilt/ holds all the prebuilt binaries, most notably the

toolchains
sdk/ is where you will find the Software Development Kit

system/ contains all the basic pieces of the Android system:
init, shell, the volume manager, etc.

▶ You can get a more precise description at
http://elinux.org/Master-android

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 57/444

http://elinux.org/Master-android

Android Source Code and Compilation

Compilation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 58/444

Android Compilation Process

▶ Android’s build system relies on the well-tried GNU/Make
software

▶ Android is using a “product” notion which corresponds to the
specifications of a shipping product, i.e. crespo for the Google
Nexus S vs crespo4g for the Sprint’s Nexus S with LTE
support

▶ To start using the build system, you need to include the file
build/envsetup.sh that defines some useful macros for
Android development or sets the PATH variable to include the
Android-specific commands

▶ source build/envsetup.sh

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 59/444

Prepare the process

▶ Now, we can get a list of all the products available and select
them with the lunch command

▶ lunch will also ask for a build variant, to choose between eng,
user and userdebug, which corresponds to which kind of
build we want, and which packages it will add

▶ You can also select variants by passing directly the combo
product-variant as argument to lunch

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 60/444

Compilation

▶ You can now start the compilation just by running make

▶ This will run a full build for the currently selected product
▶ There are many other build commands:

make <package> Builds only the package, instead of going
through the entire build

make clean Cleans all the files generated by previous
compilations

make clean-<package> Removes all the files generated by
the compilation of the given package

mm Builds all the modules in the current directory
mmm <directory> builds all the modules in the given

directory

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 61/444

Android Source Code and Compilation

Contribute

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 62/444

Gerrit

▶ For the Android development process, Google also developed
a tool to manage projects and ease code reviews.

▶ It once again uses Git to do so and Repo is also built around
it so that you can easily contribute to Android

▶ To do so, start a new branch with repo start <branchname>

▶ Do your usual commits with Git
▶ When you are done, upload to Gerrit using repo upload

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 63/444

Practical lab - First Compilation

▶ Configure which system to build
Android for

▶ Compile your first Android root
filesystem

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 64/444

Linux kernel introduction

Linux kernel
introduction

© Copyright 2004-2019, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 65/444

Linux kernel introduction

Linux features

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 66/444

History

▶ The Linux kernel is one component of a system, which also
requires libraries and applications to provide features to end
users.

▶ The Linux kernel was created as a hobby in 1991 by a Finnish
student, Linus Torvalds.
▶ Linux quickly started to be used as the kernel for free software

operating systems
▶ Linus Torvalds has been able to create a large and dynamic

developer and user community around Linux.
▶ Nowadays, more than one thousand people contribute to each

kernel release, individuals or companies big and small.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 67/444

Linux kernel key features

▶ Portability and hardware
support. Runs on most
architectures.

▶ Scalability. Can run on
super computers as well as
on tiny devices (4 MB of
RAM is enough).

▶ Compliance to standards
and interoperability.

▶ Exhaustive networking
support.

▶ Security. It can’t hide its
flaws. Its code is reviewed
by many experts.

▶ Stability and reliability.
▶ Modularity. Can include

only what a system needs
even at run time.

▶ Easy to program. You can
learn from existing code.
Many useful resources on
the net.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 68/444

Linux kernel in the system

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 69/444

Linux kernel main roles

▶ Manage all the hardware resources: CPU, memory, I/O.
▶ Provide a set of portable, architecture and hardware

independent APIs to allow user space applications and
libraries to use the hardware resources.

▶ Handle concurrent accesses and usage of hardware
resources from different applications.
▶ Example: a single network interface is used by multiple user

space applications through various network connections. The
kernel is responsible to “multiplex” the hardware resource.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 70/444

System calls

▶ The main interface between the kernel and user space is the
set of system calls

▶ About 400 system calls that provide the main kernel services
▶ File and device operations, networking operations,

inter-process communication, process management, memory
mapping, timers, threads, synchronization primitives, etc.

▶ This interface is stable over time: only new system calls can
be added by the kernel developers

▶ This system call interface is wrapped by the C library, and
user space applications usually never make a system call
directly but rather use the corresponding C library function

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 71/444

Pseudo filesystems

▶ Linux makes system and kernel information available in user
space through pseudo filesystems, sometimes also called
virtual filesystems

▶ Pseudo filesystems allow applications to see directories and
files that do not exist on any real storage: they are created
and updated on the fly by the kernel

▶ The two most important pseudo filesystems are
▶ proc, usually mounted on /proc:

Operating system related information (processes, memory
management parameters...)

▶ sysfs, usually mounted on /sys:
Representation of the system as a set of devices and buses.
Information about these devices.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 72/444

Inside the Linux kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 73/444

Linux license

▶ The whole Linux sources are Free Software released under the
GNU General Public License version 2 (GPL v2).

▶ For the Linux kernel, this basically implies that:
▶ When you receive or buy a device with Linux on it, you should

receive the Linux sources, with the right to study, modify and
redistribute them.

▶ When you produce Linux based devices, you must release the
sources to the recipient, with the same rights, with no
restriction.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 74/444

Supported hardware architectures

▶ See the arch/ directory in the kernel sources
▶ Minimum: 32 bit processors, with or without MMU, and gcc

support
▶ 32 bit architectures (arch/ subdirectories)

Examples: arm, arc, c6x, m68k, microblaze
▶ 64 bit architectures:

Examples: alpha, arm64, ia64...
▶ 32/64 bit architectures

Examples: mips, powerpc, riscv, sh, sparc, x86
▶ Find details in kernel sources: arch/<arch>/Kconfig,

arch/<arch>/README, or Documentation/<arch>/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 75/444

https://elixir.bootlin.com/linux/latest/source/arch/
https://elixir.bootlin.com/linux/latest/source/arch/
https://elixir.bootlin.com/linux/latest/source/arch/arm/
https://elixir.bootlin.com/linux/latest/source/arch/arc/
https://elixir.bootlin.com/linux/latest/source/arch/c6x/
https://elixir.bootlin.com/linux/latest/source/arch/m68k/
https://elixir.bootlin.com/linux/latest/source/arch/microblaze/
https://elixir.bootlin.com/linux/latest/source/arch/alpha/
https://elixir.bootlin.com/linux/latest/source/arch/arm64/
https://elixir.bootlin.com/linux/latest/source/arch/ia64/
https://elixir.bootlin.com/linux/latest/source/arch/mips/
https://elixir.bootlin.com/linux/latest/source/arch/powerpc/
https://elixir.bootlin.com/linux/latest/source/arch/riscv/
https://elixir.bootlin.com/linux/latest/source/arch/sh/
https://elixir.bootlin.com/linux/latest/source/arch/sparc/
https://elixir.bootlin.com/linux/latest/source/arch/x86/

Linux kernel introduction

Linux versioning scheme and
development process

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 76/444

Until 2.6 (1)

▶ One stable major branch every 2 or 3 years
▶ Identified by an even middle number
▶ Examples: 1.0.x, 2.0.x, 2.2.x, 2.4.x

▶ One development branch to integrate new functionalities and
major changes
▶ Identified by an odd middle number
▶ Examples: 2.1.x, 2.3.x, 2.5.x
▶ After some time, a development version becomes the new base

version for the stable branch
▶ Minor releases once in while: 2.2.23, 2.5.12, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 77/444

Until 2.6 (2)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 78/444

Changes since Linux 2.6

▶ Since 2.6.0 (Dec. 2003), kernel developers have been able to
introduce lots of new features one by one on a steady pace,
without having to make disruptive changes to existing
subsystems.

▶ Since then, there has been no need to create a new
development branch massively breaking compatibility with the
stable branch.

▶ Thanks to this, more features are released to users at a
faster pace.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 79/444

Versions since 2.6.0

▶ From 2003 to 2011, the official kernel versions were named
2.6.x.

▶ Linux 3.0 was released in July 2011
▶ Linux 4.0 was released in April 2015
▶ This is only a change to the numbering scheme

▶ Official kernel versions are now named x.y
(3.0, 3.1, 3.2, ..., 3.19, 4.0, 4.1, etc.)

▶ Stabilized versions are named x.y.z (3.0.2, 4.2.7, etc.)
▶ It effectively only removes a digit compared to the previous

numbering scheme

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 80/444

New development model

Using merge and bug fixing windows

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 81/444

Need for long term support

▶ Issue: bug and security fixes only released for most recent
stable kernel versions. Only LTS (Long Term Support)
releases are supported for up to 6 years.

▶ Example at Google: starting from Android O, all new Android
devices will have to run such an LTS kernel.

▶ You could also get long term support from a commercial
embedded Linux provider.

▶ The Civil Infrastructure Platform project is an industry /
Linux Foundation effort to support selected LTS versions
(starting with 4.4) much longer (> 10 years). See
http://bit.ly/2hy1QYC.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 82/444

http://bit.ly/2hy1QYC

What’s new in each Linux release? (1)

The official list of changes for each Linux release is just a huge list
of individual patches!
commit aa6e52a35d388e730f4df0ec2ec48294590cc459
Author: Thomas Petazzoni <thomas.petazzoni@bootlin.com>
Date: Wed Jul 13 11:29:17 2011 +0200

at91: at91-ohci: support overcurrent notification

Several USB power switches (AIC1526 or MIC2026) have a digital output
that is used to notify that an overcurrent situation is taking
place. This digital outputs are typically connected to GPIO inputs of
the processor and can be used to be notified of these overcurrent
situations.

Therefore, we add a new overcurrent_pin[] array in the at91_usbh_data
structure so that boards can tell the AT91 OHCI driver which pins are
used for the overcurrent notification, and an overcurrent_supported
boolean to tell the driver whether overcurrent is supported or not.

The code has been largely borrowed from ohci-da8xx.c and
ohci-s3c2410.c.

Signed-off-by: Thomas Petazzoni <thomas.petazzoni@bootlin.com>
Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>

Very difficult to find out the key changes and to get the global
picture out of individual changes.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 83/444

What’s new in each Linux release? (2)

Fortunately, there are some useful resources available
▶ http://wiki.kernelnewbies.org/LinuxChanges

(some versions are missing)
▶ http://lwn.net

▶ http://www.linux-arm.info
News about Linux on ARM, including kernel changes.

▶ http://linuxfr.org, for French readers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 84/444

http://wiki.kernelnewbies.org/LinuxChanges
http://lwn.net
http://www.linux-arm.info
http://linuxfr.org

Linux kernel introduction

Building the kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 85/444

Linux kernel introduction

Kernel configuration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 86/444

Kernel configuration

▶ The kernel contains thousands of device drivers, filesystem
drivers, network protocols and other configurable items

▶ Thousands of options are available, that are used to
selectively compile parts of the kernel source code

▶ The kernel configuration is the process of defining the set of
options with which you want your kernel to be compiled

▶ The set of options depends
▶ On the target architecture and on your hardware (for device

drivers, etc.)
▶ On the capabilities you would like to give to your kernel

(network capabilities, filesystems, real-time, etc.). Such generic
options are available in all architectures.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 87/444

Specifying the target architecture

First, specify the architecture for the kernel to build
▶ Set it to the name of a directory under arch/:

export ARCH=arm

▶ By default, the kernel build system assumes that the kernel is
configured and built for the host architecture (x86 in our case,
native kernel compiling)

▶ The kernel build system will use this setting to:
▶ Use the configuration options for the target architecture.
▶ Compile the kernel with source code and headers for the target

architecture.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 88/444

https://elixir.bootlin.com/linux/latest/source/arch/

Kernel configuration and build system

▶ The kernel configuration and build system is based on
multiple Makefiles

▶ One only interacts with the main Makefile, present at the
top directory of the kernel source tree

▶ Interaction takes place
▶ using the make tool, which parses the Makefile
▶ through various targets, defining which action should be done

(configuration, compilation, installation, etc.). Run make help
to see all available targets.

▶ Example
▶ cd linux-4.14.x/
▶ make <target>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 89/444

https://elixir.bootlin.com/linux/latest/source/Makefile

Kernel configuration details

▶ The configuration is stored in the .config file at the root of
kernel sources
▶ Simple text file, key=value (included by the kernel Makefile)

▶ As options have dependencies, typically never edited by hand,
but through graphical or text interfaces:
▶ make xconfig, make gconfig (graphical)
▶ make menuconfig, make nconfig (text)
▶ You can switch from one to another, they all load/save the

same .config file, and show the same set of options

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 90/444

Initial configuration

Difficult to find which kernel configuration will work with your
hardware and root filesystem. Start with one that works!
▶ Desktop or server case:

▶ Advisable to start with the configuration of your running
kernel, usually available in /boot:
cp /boot/config-`uname -r` .config

▶ Embedded platform case:
▶ Default configuration files are available, usually for each CPU

family.
▶ They are stored in arch/<arch>/configs/, and are just

minimal .config files (only settings different from default
ones).

▶ Run make help to find if one is available for your platform
▶ To load a default configuration file, just run

make cpu_defconfig
▶ This will overwrite your existing .config file!

Now, you can make configuration changes (make menuconfig...).
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 91/444

Create your own default configuration

To create your own default configuration file:
▶ make savedefconfig

This creates a minimal configuration (non-default settings)
▶ mv defconfig arch/<arch>/configs/myown_defconfig

This way, you can share a reference configuration inside the
kernel sources.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 92/444

Kernel or module?

▶ The kernel image is a single file, resulting from the linking
of all object files that correspond to features enabled in the
configuration
▶ This is the file that gets loaded in memory by the bootloader
▶ All included features are therefore available as soon as the

kernel starts, at a time where no filesystem exists
▶ Some features (device drivers, filesystems, etc.) can however

be compiled as modules
▶ These are plugins that can be loaded/unloaded dynamically to

add/remove features to the kernel
▶ Each module is stored as a separate file in the filesystem,

and therefore access to a filesystem is mandatory to use
modules

▶ This is not possible in the early boot procedure of the kernel,
because no filesystem is available

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 93/444

Kernel option types

There are different types of options
▶ bool options, they are either

▶ true (to include the feature in the kernel) or
▶ false (to exclude the feature from the kernel)

▶ tristate options, they are either
▶ true (to include the feature in the kernel image) or
▶ module (to include the feature as a kernel module) or
▶ false (to exclude the feature)

▶ int options, to specify integer values
▶ hex options, to specify hexadecimal values
▶ string options, to specify string values

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 94/444

Kernel option dependencies

▶ There are dependencies between kernel options
▶ For example, enabling a network driver requires the network

stack to be enabled
▶ Two types of dependencies

▶ depends on dependencies. In this case, option A that depends
on option B is not visible until option B is enabled

▶ select dependencies. In this case, with option A depending
on option B, when option A is enabled, option B is
automatically enabled

▶ With the Show All Options option, make xconfig allows to
see all options, even the ones that cannot be selected because
of missing dependencies. Values for dependencies are shown.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 95/444

make xconfig

make xconfig

▶ The most common graphical interface to configure the kernel.
▶ Make sure you read

help -> introduction: useful options!

▶ File browser: easier to load configuration files
▶ Search interface to look for parameters
▶ Required Debian / Ubuntu packages: qt5-default

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 96/444

make xconfig screenshot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 97/444

make xconfig search interface
Looks for a keyword in the parameter name. Allows to select or
unselect found parameters.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 98/444

Kernel configuration options

Compiled as a module (separate file)

Driver options

Compiled statically into the kernel

CONFIG_ISO9660_FS=m

CONFIG_JOLIET=y

CONFIG_ZISOFS=y

CONFIG_UDF_FS=y

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 99/444

Corresponding .config file excerpt
Options are grouped by sections and are prefixed with CONFIG_.
#
CD-ROM/DVD Filesystems
#
CONFIG_ISO9660_FS=m
CONFIG_JOLIET=y
CONFIG_ZISOFS=y
CONFIG_UDF_FS=y
CONFIG_UDF_NLS=y

#
DOS/FAT/NT Filesystems
#
CONFIG_MSDOS_FS is not set
CONFIG_VFAT_FS is not set
CONFIG_NTFS_FS=m
CONFIG_NTFS_DEBUG is not set
CONFIG_NTFS_RW=y

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 100/444

make gconfig

make gconfig

▶ GTK based graphical
configuration interface.
Functionality similar to that
of make xconfig.

▶ Just lacking a search
functionality.

▶ Required Debian packages:
libglade2-dev

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 101/444

make menuconfig

make menuconfig

▶ Useful when no graphics are
available. Pretty convenient
too!

▶ Same interface found in
other tools: BusyBox,
Buildroot...

▶ Required Debian packages:
libncurses-dev

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 102/444

make nconfig

make nconfig

▶ A newer, similar text
interface

▶ More user friendly (for
example, easier to access
help information).

▶ Required Debian packages:
libncurses-dev

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 103/444

make oldconfig

make oldconfig

▶ Needed very often!
▶ Useful to upgrade a .config file from an earlier kernel release
▶ Issues warnings for configuration parameters that no longer

exist in the new kernel.
▶ Asks for values for new parameters (while xconfig and

menuconfig silently set default values for new parameters).
If you edit a .config file by hand, it’s strongly recommended to
run make oldconfig afterwards!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 104/444

Undoing configuration changes

A frequent problem:
▶ After changing several kernel configuration settings, your

kernel no longer works.
▶ If you don’t remember all the changes you made, you can get

back to your previous configuration:
$ cp .config.old .config

▶ All the configuration interfaces of the kernel (xconfig,
menuconfig, oldconfig...) keep this .config.old backup
copy.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 105/444

Linux kernel introduction

Compiling and installing the kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 106/444

Choose a compiler

The compiler invoked by the kernel Makefile is
$(CROSS_COMPILE)gcc
▶ When compiling natively

▶ Leave CROSS_COMPILE undefined and the kernel will be natively
compiled for the host architecture using gcc.

▶ When using a cross-compiler
▶ To make the difference with a native compiler, cross-compiler

executables are prefixed by the name of the target system,
architecture and sometimes library. Examples:
mips-linux-gcc: the prefix is mips-linux-
arm-linux-gnueabi-gcc: the prefix is arm-linux-gnueabi-

▶ So, you can specify your cross-compiler as follows:
export CROSS_COMPILE=arm-linux-gnueabi-

CROSS_COMPILE is actually the prefix of the cross compiling tools
(gcc, as, ld, objcopy, strip...).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 107/444

Specifying ARCH and CROSS_COMPILE

There are actually two ways of defining ARCH and CROSS_COMPILE:
▶ Pass ARCH and CROSS_COMPILE on the make command line:

make ARCH=arm CROSS_COMPILE=arm-linux- ...
Drawback: it is easy to forget to pass these variables when
you run any make command, causing your build and
configuration to be screwed up.

▶ Define ARCH and CROSS_COMPILE as environment variables:
export ARCH=arm
export CROSS_COMPILE=arm-linux-
Drawback: it only works inside the current shell or terminal.
You could put these settings in a file that you source every
time you start working on the project. If you only work on a
single architecture with always the same toolchain, you could
even put these settings in your ~/.bashrc file to make them
permanent and visible from any terminal.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 108/444

Kernel compilation

▶ make
▶ In the main kernel source directory!
▶ Remember to run multiple jobs in parallel if you have multiple

CPU cores. Example: make -j 4
▶ No need to run as root!

▶ Generates
▶ vmlinux, the raw uncompressed kernel image, in the ELF

format, useful for debugging purposes, but cannot be booted
▶ arch/<arch>/boot/*Image, the final, usually compressed,

kernel image that can be booted
▶ bzImage for x86, zImage for ARM, vmlinux.bin.gz for ARC,

etc.
▶ arch/<arch>/boot/dts/*.dtb, compiled Device Tree files (on

some architectures)
▶ All kernel modules, spread over the kernel source tree, as .ko

(Kernel Object) files.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 109/444

Kernel installation: native case

▶ make install
▶ Does the installation for the host system by default, so needs

to be run as root.
▶ Installs

▶ /boot/vmlinuz-<version>
Compressed kernel image. Same as the one in
arch/<arch>/boot

▶ /boot/System.map-<version>
Stores kernel symbol addresses for debugging purposes
(obsolete: such information is usually stored in the kernel
itself)

▶ /boot/config-<version>
Kernel configuration for this version

▶ In GNU/Linux distributions, typically re-runs the bootloader
configuration utility to make the new kernel available at the
next boot.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 110/444

Kernel installation: embedded case

▶ make install is rarely used in embedded development, as the
kernel image is a single file, easy to handle.

▶ Another reason is that there is no standard way to deploy and
use the kernel image.

▶ Therefore making the kernel image available to the target is
usually manual or done through scripts in build systems.

▶ It is however possible to customize the make install
behaviour in arch/<arch>/boot/install.sh

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 111/444

Module installation: native case

▶ make modules_install
▶ Does the installation for the host system by default, so needs

to be run as root
▶ Installs all modules in /lib/modules/<version>/

▶ kernel/
Module .ko (Kernel Object) files, in the same directory
structure as in the sources.

▶ modules.alias, modules.aliases.bin
Aliases for module loading utilities. Used to find drivers for
devices. Example line:
alias usb:v066Bp20F9d*dc*dsc*dp*ic*isc*ip*in* asix

▶ modules.dep, modules.dep.bin
Module dependencies

▶ modules.symbols, modules.symbols.bin
Tells which module a given symbol belongs to.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 112/444

Module installation: embedded case

▶ In embedded development, you can’t directly use
make modules_install as it would install target modules in
/lib/modules on the host!

▶ The INSTALL_MOD_PATH variable is needed to generate the
module related files and install the modules in the target root
filesystem instead of your host root filesystem:
make INSTALL_MOD_PATH=<dir>/ modules_install

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 113/444

Kernel cleanup targets

▶ Clean-up generated files (to force
re-compilation):
make clean

▶ Remove all generated files. Needed when
switching from one architecture to another.
Caution: it also removes your .config file!
make mrproper

▶ Also remove editor backup and patch reject files
(mainly to generate patches):
make distclean

▶ If you are in a git tree, remove all files not
tracked (and ignored) by git:
git clean -fdx

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 114/444

Kernel building overview

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 115/444

Linux kernel introduction

Booting the kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 116/444

Device Tree (DT)

▶ Many embedded architectures have a lot of non-discoverable
hardware.

▶ Depending on the architecture, such hardware is either
described using C code directly within the kernel, or using a
special hardware description language in a Device Tree.

▶ The DT was created for PowerPC, and later was adopted by
other architectures (ARM, ARC...). Now Linux has DT
support in most architectures, at least for specific systems (for
example for the OLPC on x86).

▶ A Device Tree Source, written by kernel developers, is
compiled into a binary Device Tree Blob, and needs to be
passed to the kernel at boot time.
▶ There is one different Device Tree for each board/platform

supported by the kernel, available in
arch/arm/boot/dts/<board>.dtb.

▶ The bootloader must load both the kernel image and the
Device Tree Blob in memory before starting the kernel.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 117/444

Customize your board device tree!

Often needed for embedded board users:
▶ To describe external devices attached

to non-discoverable busses (such as
I2C) and configure them.

▶ To configure pin muxing: choosing
what SoC signals are made available
on the board external connectors.

▶ To configure some system parameters:
flash partitions, kernel command line
(other ways exist)

▶ Useful reference: Device Tree for
Dummies, Thomas Petazzoni (Apr.
2014): http://j.mp/1jQU6NR

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 118/444

http://j.mp/1jQU6NR

Booting with U-Boot

▶ Recent versions of U-Boot can boot the zImage binary.
▶ Older versions require a special kernel image format: uImage

▶ uImage is generated from zImage using the mkimage tool. It is
done automatically by the kernel make uImage target.

▶ On some ARM platforms, make uImage requires passing a
LOADADDR environment variable, which indicates at which
physical memory address the kernel will be executed.

▶ In addition to the kernel image, U-Boot can also pass a
Device Tree Blob to the kernel.

▶ The typical boot process is therefore:
1. Load zImage or uImage at address X in memory
2. Load <board>.dtb at address Y in memory
3. Start the kernel with bootz X - Y (zImage case), or

bootm X - Y (uImage case)
The - in the middle indicates no initramfs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 119/444

Kernel command line

▶ In addition to the compile time configuration, the kernel
behaviour can be adjusted with no recompilation using the
kernel command line

▶ The kernel command line is a string that defines various
arguments to the kernel
▶ It is very important for system configuration
▶ root= for the root filesystem (covered later)
▶ console= for the destination of kernel messages
▶ Many more exist. The most important ones are documented in

admin-guide/kernel-parameters in kernel documentation.
▶ This kernel command line is either

▶ Passed by the bootloader. In U-Boot, the contents of the
bootargs environment variable is automatically passed to the
kernel

▶ Specified in the Device Tree (for architectures which use it)
▶ Built into the kernel, using the CONFIG_CMDLINE option.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 120/444

https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html

Practical lab - Compile and Boot an Android Kernel

▶ Extract the kernel patchset from
Android Kernel

▶ Compile and boot a kernel for the
emulator

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 121/444

The Android Kernel

Changes
introduced in the
Android Kernel

© Copyright 2004-2019, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 122/444

The Android Kernel

Wakelocks

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 123/444

Power management basics

▶ Every CPU has a few states of power consumption, from
being almost completely off, to working at full capacity.

▶ These different states are used by the Linux kernel to save
power when the system is run

▶ For example, when the lid is closed on a laptop, it goes into
“suspend”, which is the most power conservative mode of a
device, where almost nothing but the RAM is kept awake

▶ While this is a good strategy for a laptop, it is not necessarily
good for mobile devices

▶ For example, you don’t want your music to be turned off
when the screen is

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 124/444

Wakelocks

▶ Android’s answer to these power management constraints is
wakelocks

▶ One of the most famous Android changes, because of the
flame wars it spawned

▶ The main idea is instead of letting the user decide when the
devices need to go to sleep, the kernel is set to suspend as
soon and as often as possible.

▶ In the same time, Android allows applications and kernel
drivers to voluntarily prevent the system from going to
suspend, keeping it awake (thus the name wakelock)

▶ This implies to write the applications and drivers to use the
wakelock API.
▶ Applications do so through the abstraction provided by the API
▶ Drivers must do it themselves, which prevents to directly

submit them to the vanilla kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 125/444

Wakelocks API

▶ Kernel Space API
#include <linux/wakelock.h>
void wake_lock_init(struct wakelock *lock,

int type,
const char *name);

void wake_lock(struct wake_lock *lock);
void wake_unlock(struct wake_lock *lock);
void wake_lock_timeout(struct wake_lock *lock, long timeout);
void wake_lock_destroy(struct wake_lock *lock);

▶ User-Space API
$ echo foobar > /sys/power/wake_lock
$ echo foobar > /sys/power/wake_unlock

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 126/444

The Android Kernel

Binder

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 127/444

Binder

▶ RPC/IPC mechanism
▶ Takes its roots from BeOS and the OpenBinder project, which

some of the current Android engineers worked on
▶ Adds remote object invocation capabilities to the Linux Kernel
▶ One of the very basic functionalities of Android. Without it,

Android cannot work.
▶ Every call to the system servers go through Binder, just like

every communication between applications, and even
communication between the components of a single
application.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 128/444

Binder

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 129/444

The Android Kernel

klogger

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 130/444

Logging

▶ Logs are very important to debug a system, either live or after
a fault occurred

▶ In a regular Linux distribution, two components are involved
in the system’s logging:
▶ Linux’ internal mechanism, accessible with the dmesg

command and holding the output of all the calls to printk()
from various parts of the kernel.

▶ A syslog daemon, which handles the user space logs and
usually stores them in the /var/log directory

▶ From Android developers’ point of view, this approach has
two flaws:
▶ As the calls to syslog() go through as socket, they generate

expensive task switches
▶ Every call writes to a file, which probably writes to a slow

storage device or to a storage device where writes are expensive

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 131/444

Logger

▶ Android addresses these issues with logger, which is a kernel
driver, that uses 4 circular buffers in the kernel memory area.

▶ The buffers are exposed in the /dev/log directory and you
can access them through the liblog library, which is in turn,
used by the Android system and applications to write to
logger, and by the logcat command to access them.

▶ This allows to have an extensive level of logging across the
entire AOSP

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 132/444

The Android Kernel

Anonymous Shared Memory
(ashmem)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 133/444

Shared memory mechanism in Linux

▶ Shared memory is one of the standard IPC mechanisms
present in most OSes

▶ Under Linux, they are usually provided by the POSIX SHM
mechanism, which is part of the System V IPCs

▶ ndk/docs/system/libc/SYSV-IPC.html illustrates all the
love Android developers have for these

▶ The bottom line is that they are flawed by design in Linux,
and lead to code leaking resources, be it maliciously or not

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 134/444

Ashmem

▶ Ashmem is the response to these flaws
▶ Notable differences are:

▶ Reference counting so that the kernel can reclaim resources
which are no longer in use

▶ There is also a mechanism in place to allow the kernel to
shrink shared memory regions when the system is under
memory pressure.

▶ The standard use of Ashmem in Android is that a process
opens a shared memory region and share the obtained file
descriptor through Binder.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 135/444

The Android Kernel

Alarm Timers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 136/444

The alarm driver

▶ Once again, the timer mechanisms available in Linux were not
sufficient for the power management policy that Android was
trying to set up

▶ High Resolution Timers can wake up a process, but don’t fire
when the system is suspended, while the Real Time Clock can
wake up the system if it is suspended, but cannot wake up a
particular process.

▶ Developed the alarm timers on top of the Real Time Clock
and High Resolution Timers already available in the kernel

▶ These timers will be fired even if the system is suspended,
waking up the device to do so

▶ Obviously, to let the application do its job, when the
application is woken up, a wakelock is grabbed

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 137/444

The Android Kernel

Low Memory Killer

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 138/444

Low Memory Killer

▶ When the system goes out of memory, Linux throws the OOM
Killer to cleanup memory greedy processes

▶ However, this behaviour is not predictable at all, and can kill
very important components of a phone (Telephony stack,
Graphic subsystem, etc) instead of low priority processes
(Angry Birds)

▶ The main idea is to have another process killer, that kicks in
before the OOM Killer and takes into account the time since
the application was last used and the priority of the
component for the system

▶ It uses various thresholds, so that it first notifies applications
so that they can save their state, then begins to kill
non-critical background processes, and then the foreground
applications

▶ As it is run to free memory before the OOM Killer, the latter
will never be run, as the system will never run out of memory

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 139/444

The Android Kernel

The ION Memory Allocator

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 140/444

ION 1/2

▶ ION was introduced with Ice Cream Sandwich (4.0) version of
Android

▶ Its role is to allocate memory in the system, for most of the
possible cases, and to allow different devices to share buffers,
without any copy, possibly from an user space application

▶ It’s for example useful if you want to retrieve an image from a
camera, and push it to the JPEG hardware encoder from an
user space application

▶ The usual Linux memory allocators can only allocate a buffer
that is up to 512 pages wide, with a page usually being 4kiB.

▶ There was previously for Android (and Linux in general) some
vendor specific mechanism to allocate larger physically
contiguous memory areas (nvmap for nVidia, CMEM for TI, etc.)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 141/444

ION 2/2

▶ ION is here to unify the interface to allocate memory in the
system, no matter on which SoC you’re running on.

▶ It uses a system of heaps, with Linux publishing the heaps
available on a given system.

▶ By default, you have three different heaps:
system Memory virtually contiguous memory, backed by

vmalloc
system contiguous Physically contiguous memory, backed by

kmalloc
carveout Large physically contiguous memory,

preallocated at boot
▶ It also has a user space interface so that processes can

allocate memory to work on.
▶ https://lwn.net/Articles/480055/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 142/444

https://lwn.net/Articles/480055/

Comparison with mainline equivalents

▶ ION has entered staging since 3.14. And:
▶ The contiguous allocation of the buffers is done through CMA
▶ The buffer sharing between devices is made through dma-buf
▶ Its user space API also allows to allocate and share buffers

from the user space, which was not possible otherwise.
▶ This API is also used to set the allocation constraints devices

might have (for example, when one particular device can only
access a subset of the memory, or when it needs to setup an
IOMMU)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 143/444

The Android Kernel

Network Security

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 144/444

Paranoid Network

▶ In the standard Linux kernel, every application can open
sockets and communicate over the Network

▶ However, Google was willing to apply a more strict policy with
regard to network access

▶ Access to the network is a permission, with a per application
granularity

▶ Filtered with the GID
▶ You need it to access IP, Bluetooth, raw sockets or RFCOMM

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 145/444

The Android Kernel

Various Drivers and Fixes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 146/444

Various additions

▶ Android also has a lot of minor features added to the Linux
kernel:
▶ RAM Console, a RAM-based console that survives a reboot to

hold kernel logs
▶ pmem, a physically contiguous memory allocator, written

specifically for the Qualcomm MSM SoCs. Obsolete Now.
▶ ADB
▶ YAFFS2
▶ Timed GPIOs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 147/444

The Android Kernel

Linux Mainline Patches Merge

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 148/444

History

▶ The Android Kernel patches were kept for a long time out of
the official Linux release

▶ They were first integrated in 2.6.29, in
drivers/staging/android

▶ They were then removed from the kernel 2.6.35, because
Google was unwilling to help the mainlining process

▶ They were then added back in 3.3 (around 2 years later) and
are still there at the time

▶ While Google did a great job at keeping most of their changes
as isolated from the core as possible, making this easy to
merge in the staging area, it wasn’t true for the wakelocks,
due to their invasive nature.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 149/444

Wakelocks Support

▶ The kernel developers were not quite happy about the
in-kernel APIs used by the wakelocks

▶ Due to the changes in every places of the kernel to state
wether or not we were allowed to suspend, it was not possible
to merge the changes as is: either you were getting all of it, or
none

▶ Since version 3.5, two features were included in the kernel to
implement opportunistic suspend:

autosleep is a way to let the kernel trigger suspend or
hibernate whenever there are no active wakeup
sources.

wake locks are a way to create and manipulate wakeup
sources from user space. The interface is
compatible with the android one.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 150/444

Current State: Merged Patches

▶ As of 3.10, the following patches/features are now found in
the mainline kernel:
▶ Binder
▶ Alarm Timers (under the name POSIX Alarm Timers

introduced in 2.6.38)
▶ Ashmem
▶ Klogger
▶ Timed GPIOs
▶ Low Memory Killer
▶ RAM Console (superseded by pstore RAM backend introduced

in 3.5)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 151/444

Current State: Missing Patches

▶ As of 3.10, the following patches/features are missing from
the mainline kernel:
▶ Paranoid Networking
▶ ION Memory Allocator
▶ USB Gadget
▶ FIQ debugger
▶ pmem (removed in 3.3)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 152/444

Android Bootloaders

Android
Bootloaders

© Copyright 2004-2019, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 153/444

Android Bootloaders

Boot Sequence

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 154/444

Bootloaders

▶ The bootloader is a piece of code responsible for
▶ Basic hardware initialization
▶ Loading of an application binary, usually an operating system

kernel, from flash storage, from the network, or from another
type of non-volatile storage.

▶ Possibly decompression of the application binary
▶ Execution of the application

▶ Besides these basic functions, most bootloaders provide a shell
with various commands implementing different operations.
▶ Loading of data from storage or network, memory inspection,

hardware diagnostics and testing, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 155/444

Bootloaders on BIOS-based x86 (1)

▶ The x86 processors are typically bundled on a
board with a non-volatile memory containing a
program, the BIOS.

▶ On old BIOS-based x86 platforms: the BIOS is
responsible for basic hardware initialization and
loading of a very small piece of code from
non-volatile storage.

▶ This piece of code is typically a 1st stage
bootloader, which will load the full bootloader
itself.

▶ It typically understands filesystem formats so
that the kernel file can be loaded directly from a
normal filesystem.

▶ This sequence is different for modern EFI-based
systems.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 156/444

Bootloaders on x86 (2)

▶ GRUB, Grand Unified Bootloader, the most powerful one.
http://www.gnu.org/software/grub/
▶ Can read many filesystem formats to load the kernel image and

the configuration, provides a powerful shell with various
commands, can load kernel images over the network, etc.

▶ See our dedicated presentation for details:
https://bootlin.com/doc/legacy/grub/

▶ Syslinux, for network and removable media booting (USB key,
CD-ROM)
http://www.kernel.org/pub/linux/utils/boot/syslinux/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 157/444

http://www.gnu.org/software/grub/
https://bootlin.com/doc/legacy/grub/
http://www.kernel.org/pub/linux/utils/boot/syslinux/

Booting on embedded CPUs: case 1

▶ When powered, the CPU starts executing code
at a fixed address

▶ There is no other booting mechanism provided
by the CPU

▶ The hardware design must ensure that a NOR
flash chip is wired so that it is accessible at the
address at which the CPU starts executing
instructions

▶ The first stage bootloader must be programmed
at this address in the NOR

▶ NOR is mandatory, because it allows random
access, which NAND doesn’t allow

▶ Not very common anymore (unpractical, and
requires NOR flash)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 158/444

Booting on embedded CPUs: case 2

▶ The CPU has an integrated boot code in ROM
▶ BootROM on AT91 CPUs, “ROM code” on OMAP, etc.
▶ Exact details are CPU-dependent

▶ This boot code is able to load a first stage bootloader from a
storage device into an internal SRAM (DRAM not initialized
yet)
▶ Storage device can typically be: MMC, NAND, SPI flash,

UART (transmitting data over the serial line), etc.
▶ The first stage bootloader is

▶ Limited in size due to hardware constraints (SRAM size)
▶ Provided either by the CPU vendor or through community

projects
▶ This first stage bootloader must initialize DRAM and other

hardware devices and load a second stage bootloader into
RAM

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 159/444

Booting on ARM Microchip AT91

▶ RomBoot: tries to find a valid bootstrap image
from various storage sources, and load it into
SRAM (DRAM not initialized yet). Size limited
to 4 KB. No user interaction possible in standard
boot mode.

▶ AT91Bootstrap: runs from SRAM. Initializes the
DRAM, the NAND or SPI controller, and loads
the secondary bootloader into RAM and starts it.
No user interaction possible.

▶ U-Boot: runs from RAM. Initializes some other
hardware devices (network, USB, etc.). Loads the
kernel image from storage or network to RAM
and starts it. Shell with commands provided.

▶ Linux Kernel: runs from RAM. Takes over the
system completely (the bootloader no longer
exists).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 160/444

Booting on ARM TI OMAP3

▶ ROM Code: tries to find a valid bootstrap image
from various storage sources, and load it into
SRAM or RAM (RAM can be initialized by ROM
code through a configuration header). Size
limited to <64 KB. No user interaction possible.

▶ X-Loader or U-Boot: runs from SRAM.
Initializes the DRAM, the NAND or MMC
controller, and loads the secondary bootloader
into RAM and starts it. No user interaction
possible. File called MLO.

▶ U-Boot: runs from RAM. Initializes some other
hardware devices (network, USB, etc.). Loads the
kernel image from storage or network to RAM
and starts it. Shell with commands provided. File
called u-boot.bin or u-boot.img.

▶ Linux Kernel: runs from RAM. Takes over the
system completely (bootloaders no longer exists).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 161/444

Booting on Marvell SoC

▶ ROM Code: tries to find a valid bootstrap image
from various storage sources, and load it into
RAM. The RAM configuration is described in a
CPU-specific header, prepended to the bootloader
image.

▶ U-Boot: runs from RAM. Initializes some other
hardware devices (network, USB, etc.). Loads the
kernel image from storage or network to RAM
and starts it. Shell with commands provided. File
called u-boot.kwb.

▶ Linux Kernel: runs from RAM. Takes over the
system completely (bootloaders no longer exists).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 162/444

Generic bootloaders for embedded CPUs

▶ We will focus on the generic part, the main bootloader,
offering the most important features.

▶ There are several open-source generic bootloaders.
Here are the most popular ones:
▶ U-Boot, the universal bootloader by Denx

The most used on ARM, also used on PPC, MIPS, x86, m68k,
NIOS, etc. The de-facto standard nowadays. We will study it
in detail.
http://www.denx.de/wiki/U-Boot

▶ Barebox, an architecture-neutral bootloader, written as a
successor of U-Boot. It doesn’t have as much hardware
support as U-Boot yet. U-Boot has improved quite a lot
thanks to this competitor.
http://www.barebox.org

▶ There are also a lot of other open-source or proprietary
bootloaders, often architecture-specific
▶ RedBoot, Yaboot, PMON, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 163/444

http://www.denx.de/wiki/U-Boot
http://www.barebox.org

Android Bootloaders

Fastboot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 164/444

Definition

▶ Fastboot is a protocol to communicate with bootloaders over
USB

▶ It is very simple to implement, making it easy to port on both
new devices and on host systems

▶ Accessible with the fastboot command

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 165/444

The Fastboot protocol

▶ It is very restricted, only 10 commands are defined in the
protocol specifications

▶ It is synchronous and driven by the host
▶ Allows to:

▶ Transmit data
▶ Flash the various partitions of the device
▶ Get variables from the bootloader
▶ Control the boot sequence

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 166/444

Session example

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 167/444

Booting into Fastboot

▶ On most devices, it’s disabled by default (the bootloader
won’t even implement it)

▶ On devices that support it, such as Google Nexus’, you have
several options:
▶ Use a combination of keys at boot to start the bootloader

right away into its fastboot mode
▶ Use the adb reboot bootloader command on your

workstation. The device will reboot in fastboot mode, awaiting
for inputs.

▶ You can then interact with the device through the fastboot
command on your workstation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 168/444

Major Fastboot Commands

▶ You can get all the commands through fastboot -h

▶ The most widely used commands are:
devices Lists the fastboot-capable devices

boot Downloads a kernel and boots on it
erase Erases a given flash partition name
flash Writes a given file to a given flash partition

getvar Retrieves a variable from the bootloader
continue Goes on with a regular boot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 169/444

getvar Variables

▶ Vendor-specific variables must also begin with a upper-case
letter. Variables beginning with a lower-case letter are
reserved for the Fastboot specifications and their evolution.

version Version of the Fastboot protocol implemented
version-bootloader Version of the bootloader
version-baseband Version of the baseband firmware

product Name of the product
serialno Product serial number

secure Does the bootloader require signed images?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 170/444

Android Build System: Basics

Android Build
System: Basics

© Copyright 2004-2019, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 171/444

Android Build System: Basics

Basics

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 172/444

Build Systems

▶ Build systems are designed to meet several goals:
▶ Integrate all the software components, both third-party and

in-house into a working image
▶ Be able to easily reproduce a given build

▶ Usually, they build software using the existing building system
shipped with each component

▶ Several solutions: Yocto, Buildroot, ptxdist.
▶ Google came up with its own solution for Android, that never

relies on other build systems, except for GNU/Make
▶ It allows to rely on very few tools, and to control every

software component in a consistent way.
▶ But it also means that when you have to import a new

component, you have to rewrite the whole Makefile to build it

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 173/444

First compilation

$ source build/envsetup.sh
$ lunch
You're building on Linux

Lunch menu... pick a combo:
1. generic-eng
2. simulator
3. full_passion-userdebug
4. full_crespo-userdebug

Which would you like? [generic-eng]
$ make
$ make showcommands

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 174/444

Android Build System: Basics

envsetup.sh

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 175/444

Purpose

▶ Obviously modifies the current environment, that’s why we
have to source it

▶ It adds many useful shell macros
▶ These macros will serve several purposes:

▶ Configure and set up the build system
▶ Ease the navigation in the source code
▶ Ease the development process

▶ Some macros will modify the environment variables, to be
used by the build system later on

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 176/444

Environments variables exported 1/2

▶ ANDROID_EABI_TOOLCHAIN
▶ Path to the Android prebuilt toolchain (.../prebuilt/linux-

x86/toolchain/arm-eabi-4.4.3/bin)
▶ ANDROID_TOOLCHAIN

▶ Equals to ANDROID_EABI_TOOLCHAIN

▶ ANDROID_QTOOLS
▶ Tracing tools for qemu (.../development/emulator/qtools).

This is weird however, since this path doesn’t exist at all
▶ ANDROID_BUILD_PATHS

▶ Path containing all the folders containing tools for the build
(.../out/host/linux-x86/bin:$ANDROID_TOOLCHAIN:
$ANDROID_QTOOLS:$ANDROID_TOOLCHAIN:
$ANDROID_EABI_TOOLCHAIN)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 177/444

Environments variables exported 2/2

▶ JAVA_HOME
▶ Path to the Java environment (/usr/lib/jvm/java-6-sun)

▶ ANDROID_JAVA_TOOLCHAIN
▶ Path to the Java toolchain ($JAVA_HOME/bin)

▶ ANDROID_PRE_BUILD_PATHS
▶ Alias to ANDROID_JAVA_TOOLCHAIN

▶ ANDROID_PRODUCT_OUT
▶ Path to where the generated files will be for this product

(.../out/target/product/<product_name>)
▶ OUT

▶ Alias to ANDROID_PRODUCT_OUT

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 178/444

Defined Commands 1/2

lunch Used to configure the build system
croot Changes the directory to go back to the root of the

Android source tree
cproj Changes the directory to go back to the root of the

current package
tapas Configure the build system to build a given

application
m Makes the whole build from any directory in the

source tree
mm Builds the modules defined in the current directory

mmm Builds the modules defined in the given directory

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 179/444

Defined Commands 2/2

cgrep Greps the given pattern on all the C/C++/header
files

jgrep Greps the given pattern on all the Java files
resgrep Greps the given pattern on all the resources files
mgrep Greps the given pattern on all the Makefiles
sgrep Greps the given pattern on all Android source file
godir Go to the directory containing the given file

pid Use ADB to get the PID of the given process
gdbclient Use ADB to set up a remote debugging session
key_back Sends a input event corresponding to the Back key to

the device

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 180/444

Android Build System: Basics

Configuration of the Build System

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 181/444

Configuration

▶ The Android build system is not much configurable compared
to other build systems, but it is possible to modify to some
extent

▶ Among the several configuration options you have, you can
add extra flags for the C compiler, have a given package built
with debug options, specify the output directory, and first of
all, choose what product you want to build.

▶ This is done either through the lunch command or through a
buildspec.mk file placed at the top of the source directory

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 182/444

lunch

▶ lunch is a shell function defined in build/envsetup.sh

▶ It is the easiest way to configure a build. You can either
launch it without any argument and it will ask to choose
among a list of known “combos” or launch it with the desired
combos as argument.

▶ It sets the environment variables needed for the build and
allows to start compiling at last

▶ You can declare new combos through the add_lunch_combo
command

▶ These combos are the aggregation of the product to build and
the variant to use (basically, which set of modules to install)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 183/444

Variables Exported by Lunch

▶ TARGET_PRODUCT
▶ Which product to build. To build for the emulator, you will

have aosp_<arch>

▶ TARGET_BUILD_VARIANT
▶ Select which set of modules to build, among

▶ user: Includes modules tagged user (Phone)
▶ userdebug: Includes modules tagged user or debug (strace)
▶ eng: Includes modules tagged user, debug or eng:

(e2fsprogs)
▶ TARGET_BUILD_TYPE

▶ Either release or debug. If debug is set, it will enable some
debug options across the whole system.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 184/444

buildspec.mk

▶ While lunch is convenient to quickly switch from one
configuration to another. If you have only one product or you
want to do more fine-grained configuration, this is not really
convenient

▶ The file buildspec.mk is here for that.
▶ If you place it at the top of the sources, it will be used by the

build system to get its configuration instead of relying on the
environment variables

▶ It offers more variables to modify, such as compiling a given
module with debugging symbols, additional C compiler flags,
change the output directory...

▶ A sample is available in build/buildspec.mk.default, with
lots of comments on the various variables.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 185/444

Android Build System: Basics

Results

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 186/444

Output

▶ All the output is generated in the out/ directory, outside of
the source code directory

▶ This directory contains mostly two subdirectories: host/ and
target/

▶ These directories contain all the objects files compiled during
the build process: .o files for C/C++ code, .jar files for
Java libraries, etc

▶ It is an interesting feature, since it keeps all the generated
stuff separate from the source code, and we can easily clean
without side effects

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 187/444

Images

▶ It also generates the system images in the
out/target/product/<device_name>/ directory

▶ These images are:
boot.img A basic Android image, containing only the

needed components to boot: a kernel image and
a minimal system

system.img The remaining parts of Android. Much bigger, it
contains most of the framework, applications
and daemons

userdata.img A partition that will hold the user generated
content. Mostly empty at compilation.

recovery.img A recovery image that allows to be able to
debug or restore the system when something
nasty happened.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 188/444

Android Boot Images

▶ The boot images are actually an Android-specific format, that
holds most of what the bootloader expects

▶ They contains useful information, like the kernel command
line, where to load the kernel, but also the image of the
kernel, and an optional initramfs image

▶ A custom mkbootimg tool is used by Android to generate
these images at compilation time from the kernel and the
system it’s generating

▶ We can tweak the behaviour of that tool from the build
system configuration, that allows a great flexibility

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 189/444

Android boot and recovery images

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 190/444

Boot sequence

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 191/444

Cleaning

▶ Cleaning is almost as easy as rm -rf out/

▶ make clean or make clobber deletes all generated files.
▶ make installclean removes the installed files for the current

combo. It is useful when you work with several products to
avoid doing a full rebuild each time you change from one to
the other

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 192/444

Practical lab - Supporting a New Board

▶ Boot Android on a real hardware
▶ Troubleshoot simple problems on

Android
▶ Generate a working build

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 193/444

Android Debug Bridge

Developing and
Debugging with
ADB

© Copyright 2004-2019, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 194/444

Android Debug Bridge

Introduction

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 195/444

ADB

▶ Usually on embedded devices, debugging is done either
through a serial port on the device or JTAG for low-level
debugging

▶ This setup works well when developing a new product that
will have a static system. You develop and debug a system on
a product with serial and JTAG ports, and remove these ports
from the final product.

▶ For mobile devices, where you will have applications
developers that are not in-house, this is not enough.

▶ To address that issue, Google developed ADB, that runs on
top of USB, so that another developer can still have
debugging and low-level interaction with a production device.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 196/444

Implementation

▶ The code is split in 3 components:
▶ ADBd, the part that runs on the device
▶ ADB server, which is run on the host, acts as a proxy and

manages the connection to ADBd
▶ ADB clients, which are also run on the host, and are what is

used to send commands to the device
▶ ADBd can work either on top of TCP or USB.

▶ For USB, Google has implemented a driver using the USB
gadget and the USB composite frameworks as it implements
either the ADB protocol and the USB Mass Storage
mechanism.

▶ For TCP, ADBd just opens a socket
▶ ADB can also be used as a transport layer between the

development platform and the device, disregarding whether it
uses USB or TCP as underneath layer

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 197/444

ADB Architecture

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 198/444

Android Debug Bridge

Use of ADB

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 199/444

ADB commands: Basics

start-server Starts the ADB server on the host
kill-server Kills the ADB server on the host

devices Lists accessible devices
connect Connects to a remote ADBd using TCP port 5555 by

default
disconnect Disconnects from a connected device

help Prints available commands with help information
version Prints the version number

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 200/444

ADB commands: Files and applications

push Copies a local file to the device
pull Copies a remote file from the device

sync There are three cases here:
▶ If no argument is passed, copies the local

directories system and data if they differ from
/system and /data on the target.

▶ If either system or data is passed, syncs this
directory with the associated partition on the
device

▶ Else, syncs the given folder
install Installs the given Android package (apk) on the

device
uninstall Uninstalls the given package name from the device

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 201/444

ADB commands: Debugging

logcat Prints the device logs. You can filter either on the
source of the logs or their on their priority level

shell Runs a remote shell with a command line interface.
If an argument is given, runs it as a command and
prints out the result

bugreport Gets all the relevant information to generate a bug
report from the device: logs, internal state of the
device, etc.

jdwp Lists the processes that support the JDWP protocol

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 202/444

ADB commands: Scripting 1/2

wait-for-device Blocks until the device gets connected to ADB.
You can also add additional commands to be run
when the device becomes available.

get-state Prints the current state of the device, offline,
bootloader or device

get-serialno Prints the serial number of the device
remount Remounts the /system partition on the device in

read/write mode

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 203/444

ADB commands: Scripting 2/2

reboot Reboots the device. bootloader and recovery
arguments are available to select the operation mode
you want to reboot to.

reboot-bootloader Reboots the device into the bootloader
root Restarts ADBd with root permissions on the device

▶ Useful if the ro.secure property is set to 1 to
force ADB into user mode. But ro.debuggable
has to be set to 1 to allow to restart ADB as
root

usb Restarts ADBd listening on USB
tcpip Restarts ADBd listening on TCP on the given port

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 204/444

ADB commands: Easter eggs

lolcat Alias to adb logcat

hell Equivalent to adb shell, with a different color
scheme

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 205/444

Android Debug Bridge

Examples

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 206/444

ADB forward and gdb

adb forward tcp:5555 tcp:1234
See also gdbclient

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 207/444

ADB forward and jdb

adb forward tcp:5555 jdwp:4242

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 208/444

Various commands

▶ Wait for a device and install an application
▶ adb wait-for-device install foobar.apk

▶ Test an application by sending random user input
▶ adb shell monkey -v -p com.bootlin.foobar 500

▶ Filter system logs
▶ adb logcat ActivityManager:I FooBar:D *:S
▶ You can also set the ANDROID_LOG_TAGS environment variable

on your workstation
▶ Access other log buffers

▶ adb logcat -b radio

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 209/444

Practical lab - Use ADB

▶ Debug your system and
applications

▶ Get a shell on a device
▶ Exchange files with a device
▶ Install new applications

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 210/444

Android Filesystem

Android
Filesystem

© Copyright 2004-2019, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 211/444

Android Filesystem

Principle and solutions

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 212/444

Filesystems

▶ Filesystems are used to organize data in directories and files
on storage devices or on the network. The directories and files
are organized as a hierarchy

▶ In Unix systems, applications and users see a single global
hierarchy of files and directories, which can be composed of
several filesystems.

▶ Filesystems are mounted in a specific location in this
hierarchy of directories
▶ When a filesystem is mounted in a directory (called mount

point), the contents of this directory reflects the contents of
the storage device

▶ When the filesystem is unmounted, the mount point is empty
again.

▶ This allows applications to access files and directories easily,
regardless of their exact storage location

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 213/444

Filesystems (2)

▶ Create a mount point, which is just a directory
$ mkdir /mnt/usbkey

▶ It is empty
$ ls /mnt/usbkey
$

▶ Mount a storage device in this mount point
$ mount -t vfat /dev/sda1 /mnt/usbkey
$

▶ You can access the contents of the USB key
$ ls /mnt/usbkey
docs prog.c picture.png movie.avi
$

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 214/444

mount / umount

▶ mount allows to mount filesystems
▶ mount -t type device mountpoint
▶ type is the type of filesystem
▶ device is the storage device, or network location to mount
▶ mountpoint is the directory where files of the storage device or

network location will be accessible
▶ mount with no arguments shows the currently mounted

filesystems
▶ umount allows to unmount filesystems

▶ This is needed before rebooting, or before unplugging a USB
key, because the Linux kernel caches writes in memory to
increase performance. umount makes sure that these writes are
committed to the storage.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 215/444

Root filesystem

▶ A particular filesystem is mounted at the root of the hierarchy,
identified by /

▶ This filesystem is called the root filesystem
▶ As mount and umount are programs, they are files inside a

filesystem.
▶ They are not accessible before mounting at least one

filesystem.
▶ As the root filesystem is the first mounted filesystem, it

cannot be mounted with the normal mount command
▶ It is mounted directly by the kernel, according to the root=

kernel option
▶ When no root filesystem is available, the kernel panics

Please append a correct "root=" boot option
Kernel panic - not syncing: VFS: Unable to mount root fs on unknown block(0,0)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 216/444

Location of the root filesystem

▶ It can be mounted from different locations
▶ From the partition of a hard disk
▶ From the partition of a USB key
▶ From the partition of an SD card
▶ From the partition of a NAND flash chip or similar type of

storage device
▶ From the network, using the NFS protocol
▶ From memory, using a pre-loaded filesystem (by the

bootloader)
▶ etc.

▶ It is up to the system designer to choose the configuration for
the system, and configure the kernel behaviour with root=

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 217/444

Mounting rootfs from storage devices

▶ Partitions of a hard disk or USB key
▶ root=/dev/sdXY, where X is a letter indicating the device, and

Y a number indicating the partition
▶ /dev/sdb2 is the second partition of the second disk drive

(either USB key or ATA hard drive)
▶ Partitions of an SD card

▶ root=/dev/mmcblkXpY, where X is a number indicating the
device and Y a number indicating the partition

▶ /dev/mmcblk0p2 is the second partition of the first device
▶ Partitions of flash storage

▶ root=/dev/mtdblockX, where X is the partition number
▶ /dev/mtdblock3 is the fourth partition of a NAND flash chip

(if only one NAND flash chip is present)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 218/444

rootfs in memory: initramfs (1)

▶ It is also possible to have the root filesystem integrated into
the kernel image

▶ It is therefore loaded into memory together with the kernel
▶ This mechanism is called initramfs

▶ It integrates a compressed archive of the filesystem into the
kernel image

▶ Variant: the compressed archive can also be loaded separately
by the bootloader.

▶ It is useful for two cases
▶ Fast booting of very small root filesystems. As the filesystem is

completely loaded at boot time, application startup is very fast.
▶ As an intermediate step before switching to a real root

filesystem, located on devices for which drivers not part of the
kernel image are needed (storage drivers, filesystem drivers,
network drivers). This is always used on the kernel of
desktop/server distributions to keep the kernel image size
reasonable.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 219/444

rootfs in memory: initramfs (2)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 220/444

rootfs in memory: initramfs (3)

▶ The contents of an initramfs are defined at the kernel
configuration level, with the CONFIG_INITRAMFS_SOURCE
option
▶ Can be the path to a directory containing the root filesystem

contents
▶ Can be the path to a cpio archive
▶ Can be a text file describing the contents of the initramfs

(see documentation for details)
▶ The kernel build process will automatically take the contents

of the CONFIG_INITRAMFS_SOURCE option and integrate the
root filesystem into the kernel image

▶ Details (in kernel sources):
Documentation/filesystems/ramfs-rootfs-initramfs.txt

Documentation/early-userspace/README

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 221/444

https://kernel.org/doc/Documentation/filesystems/ramfs-rootfs-initramfs.txt
https://kernel.org/doc/Documentation/early-userspace/README

Android Filesystem

Contents

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 222/444

Filesystem organization on GNU/Linux

▶ On most Linux based distributions, the filesystem layout is
defined by the Filesystem Hierarchy Standard

▶ The FHS defines the main directories and their contents
/bin Essential command binaries

/boot Bootloader files, i.e. kernel images and related
stuff

/etc Host-specific system-wide configuration files.
▶ Android follows an orthogonal path, storing its files in folders

not present in the FHS, or following it when it uses a defined
folder

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 223/444

Filesystem organization on Android

▶ Instead, the two main directories used by Android are
/system Immutable directory coming from the original

build. It contains native binaries and libraries,
framework jar files, configuration files, standard
apps, etc.

/data is where all the changing content of the system
are put: apps, data added by the user, data
generated by all the apps at runtime, etc.

▶ These two directories are usually mounted on separate
partitions, from the root filesystem originating from a kernel
RAM disk.

▶ Android also uses some usual suspects: /proc, /dev, /sys,
/etc, /sbin, /mnt where they serve the same function they
usually do

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 224/444

/system

./app All the pre-installed apps
./bin Binaries installed on the system (toolbox, vold,

surfaceflinger)
./etc Configuration files

./fonts Fonts installed on the system
./framework Jar files for the framework

./lib Shared objects for the system libraries
./modules Kernel modules

./xbin External binaries

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 225/444

Other directories

▶ Like we said earlier, Android most of the time either uses
directories not in the FHS, or directories with the exact same
purpose as in standard Linux distributions (/dev, /proc,
/sys), therefore avoiding collisions.

▶ There are some collisions though, for /etc and /sbin, which
are hopefully trimmed down

▶ This allows to have a full Linux distribution side by side with
Android with only minor tweaks

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 226/444

android_filesystem_config.h

▶ Located in system/core/include/private/
▶ Contains the full filesystem setup, and is written as a C

header
▶ UID/GID
▶ Permissions for system directories
▶ Permissions for system files

▶ Processed at compilation time to enforce the permissions
throughout the filesystem

▶ Useful in other parts of the framework as well, such as ADB

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 227/444

Android Filesystem

Device Files

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 228/444

Devices

▶ One of the kernel important roles is to allow applications to
access hardware devices

▶ In the Linux kernel, most devices are presented to user space
applications through two different abstractions
▶ Character device
▶ Block device

▶ Internally, the kernel identifies each device by a triplet of
information
▶ Type (character or block)
▶ Major (typically the category of device)
▶ Minor (typically the identifier of the device)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 229/444

Types of devices

▶ Block devices
▶ A device composed of fixed-sized blocks, that can be read and

written to store data
▶ Used for hard disks, USB keys, SD cards, etc.

▶ Character devices
▶ Originally, an infinite stream of bytes, with no beginning, no

end, no size. The pure example: a serial port.
▶ Used for serial ports, terminals, but also sound cards, video

acquisition devices, frame buffers
▶ Most of the devices that are not block devices are represented

as character devices by the Linux kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 230/444

Android Filesystem

Minimal filesystem

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 231/444

Basic applications

▶ In order to work, a Linux system needs at least a few applications
▶ An init application, which is the first user space application started

by the kernel after mounting the root filesystem
▶ The kernel tries to run /sbin/init, /bin/init, /etc/init

and /bin/sh.
▶ In the case of an initramfs, it will only look for /init. Another

path can be supplied by the rdinit kernel argument.
▶ If none of them are found, the kernel panics and the boot

process is stopped.
▶ The init application is responsible for starting all other user

space applications and services
▶ A shell, to implement scripts, automate tasks, and allow a user to

interact with the system
▶ Basic Unix executables, for use in system scripts or in interactive

shells: mv, cp, mkdir, cat, modprobe, mount, ifconfig, etc.
▶ These basic components have to be integrated into the root

filesystem to make it usable

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 232/444

Overall booting process

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 233/444

Android Build System: Advanced

Android Build
System: Advanced

© Copyright 2004-2019, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 234/444

Android Build System: Advanced

Add a New Module

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 235/444

Modules

▶ Every component in Android is called a module
▶ Modules are defined across the entire tree through the

Android.mk files
▶ The build system abstracts many details to make the creation

of a module’s Makefile as trivial as possible
▶ Of course, building a module that will be an Android

application and building a static library will not require the
same instructions, but these builds don’t differ that much
either.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 236/444

Hello World

LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)

LOCAL_SRC_FILES = hello_world.c
LOCAL_MODULE = HelloWorld

LOCAL_MODULE_TAGS = optional

include $(BUILD_EXECUTABLE)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 237/444

Hello World

▶ Every module variable is prefixed by LOCAL_*

▶ LOCAL_PATH tells the build system where the current module is
▶ include $(CLEAR_VARS) cleans the previously declared

LOCAL_* variables. This way, we make sure we won’t have
anything weird coming from other modules. The list of the
variables cleared is in build/core/clear_vars.mk

▶ LOCAL_SRC_FILES contains a list of all source files to be
compiled

▶ LOCAL_MODULE sets the module name
▶ LOCAL_MODULE_TAGS defines the set of modules this module

should belong to
▶ include $(BUILD_EXECUTABLE) tells the build system to

build this module as a binary

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 238/444

Tags

▶ Tags are used to define several sets of modules to be built
through the build variant selected by lunch

▶ We have 3 build variants:
▶ user

▶ Installs modules tagged with user
▶ Installs non-packaged modules that have no tags specified
▶ ro.secure = 1
▶ ro.debuggable = 0
▶ ADB is disabled by default

▶ userdebug is user plus
▶ Installs modules tagged with debug
▶ ro.debuggable = 1
▶ ADB is enabled by default

▶ eng is userdebug, plus
▶ Installs modules tagged as eng and development
▶ ro.secure = 0
▶ ro.kernel.android.checkjni = 1

▶ Finally, we have a fourth tag, optional, that will never be
directly integrated by a build variant, but deprecates user

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 239/444

Build Targets 1/3

▶ BUILD_EXECUTABLE
▶ Builds a normal ELF binary to be run on the target

▶ BUILD_HOST_EXECUTABLE
▶ Builds an ELF binary to be run on the host

▶ BUILD_RAW_EXECUTABLE
▶ Builds a binary to be run on bare metal

▶ BUILD_JAVA_LIBRARY
▶ Builds a Java library (.jar) to be used on the target

▶ BUILD_STATIC_JAVA_LIBRARY
▶ Builds a static Java library to be used on the target

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 240/444

Build Targets 2/3

▶ BUILD_HOST_JAVA_LIBRARY
▶ Builds a Java library to be used on the host

▶ BUILD_SHARED_LIBRARY
▶ Builds a shared library for the target

▶ BUILD_STATIC_LIBRARY
▶ Builds a static library for the target

▶ BUILD_HOST_SHARED_LIBRARY
▶ Builds a shared library for the host

▶ BUILD_HOST_STATIC_LIBRARY
▶ Builds a static library for the host

▶ BUILD_RAW_STATIC_LIBRARY
▶ Builds a static library to be used on bare metal

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 241/444

Build Targets 3/3

▶ BUILD_PREBUILT
▶ Used to install prebuilt files on the target (configuration files,

kernel)
▶ BUILD_HOST_PREBUILT

▶ Used to install prebuilt files on the host
▶ BUILD_MULTI_PREBUILT

▶ Used to install prebuilt files of multiple modules of known types
▶ BUILD_PACKAGE

▶ Builds a standard Android package (.apk)
▶ BUILD_KEY_CHAR_MAP

▶ Builds a device character map

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 242/444

Other useful variables

▶ LOCAL_CFLAGS
▶ Extra C compiler flags to use to build the module

▶ LOCAL_SHARED_LIBRARIES
▶ List of shared libraries this module depends on at compilation

time
▶ LOCAL_PACKAGE_NAME

▶ Equivalent to LOCAL_MODULE for Android packages
▶ LOCAL_C_INCLUDES

▶ List of paths to extra headers used by this module
▶ LOCAL_REQUIRED_MODULES

▶ Express that a given module depends on another at runtime,
and therefore should be included in the image as well

▶ Many other similar options depending on what you want to do
▶ You can get a complete list by reading

build/core/clear_vars.mk

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 243/444

Useful Make Macros

▶ In the build/core/definitions.mk file, you will find useful
macros to use in the Android.mk file, that mostly allows you
to:
▶ Find files

▶ all-makefiles-under, all-subdir-c-files, etc
▶ Transform them

▶ transform-c-to-o, ...
▶ Copy them

▶ copy-file-to-target, ...
▶ and some utilities

▶ my-dir, inherit-package, etc
▶ All these macros should be called through Make’s call

command, possibly with arguments

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 244/444

Prebuilt Package Example

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)
LOCAL_MODULE_TAGS := optional
LOCAL_MODULE := configuration_files.txt
LOCAL_MODULE_CLASS := ETC
LOCAL_MODULE_PATH := $(TARGET_OUT_ETC)
LOCAL_SRC_FILES := $(LOCAL_MODULE)
include $(BUILD_PREBUILT)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 245/444

Making and cleaning a module (1/2)

▶ To build a module from the top directory, just do
make ModuleName

▶ The files generated will be put in
out/target/product/$TARGET_DEVICE/obj/<module_type>
/<module_name>_intermediates

▶ However, building a simple module won’t regenerate a new
image. This is just useful to make sure that the module
builds. You will have to do a full make to have an image that
contains your module

▶ Actually, a full make will build your module at some point, but
you won’t find it in your generated image if it is tagged as
optional

▶ If you want to enable it for all builds, add its name to the
PRODUCT_PACKAGES variables in the
build/target/product/core.mk file.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 246/444

Making and cleaning a module (2/2)

▶ To clean a single module, do make clean-ModuleName

▶ You can also get the list of the modules available in the build
system with the make modules target

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 247/444

Practical lab - Building a Library

▶ Add an external library to the
Android build system

▶ Compile it statically and
dynamically

▶ Add a component to a build

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 248/444

Practical lab - Add a Native Application to the Build

▶ Add an external binary to a system
▶ Express dependencies on other

components of the build system

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 249/444

Android Build System: Advanced

Add a New Product

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 250/444

Defining new products

▶ Devices are well supported by the Android build system. It
allows to build multiple devices with the same source tree, to
have a per-device configuration, etc.

▶ All the product definitions should be put in
device/<company>/<device>

▶ The entry point is the AndroidProducts.mk file, which should
define the PRODUCT_MAKEFILES variable

▶ This variable defines where the actual product definitions are
located.

▶ It follows such an architecture because you can have several
products using the same device

▶ If you want your product to appear in the lunch menu, you
need to create a vendorsetup.sh file in the device directory,
with the right calls to add_lunch_combo

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 251/444

Product, devices and boards

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 252/444

Minimal Product Declaration

$(call inherit-product, build/target/product/generic.mk)

PRODUCT_NAME := full_MyDevice
PRODUCT_DEVICE := MyDevice
PRODUCT_MODEL := Full flavor of My Brand New Device

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 253/444

Copy files to the target

$(call inherit-product, build/target/product/generic.mk)

PRODUCT_COPY_FILES += \
device/mybrand/mydevice/vold.fstab:system/etc/vold.fstab

PRODUCT_NAME := full_MyDevice
PRODUCT_DEVICE := MyDevice
PRODUCT_MODEL := Full flavor of My Brand New Device

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 254/444

Add a package to the build for this product

$(call inherit-product, build/target/product/generic.mk)

PRODUCT_PACKAGES += FooBar

PRODUCT_COPY_FILES += \
device/mybrand/mydevice/vold.fstab:system/etc/vold.fstab

PRODUCT_NAME := full_mydevice
PRODUCT_DEVICE := mydevice
PRODUCT_MODEL := Full flavor of My Brand New Device

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 255/444

Overlays

▶ This is a mechanism used by products to override resources
already defined in the source tree, without modifying the
original code

▶ This is used for example to change the wallpaper for one
particular device

▶ Use the DEVICE_PACKAGE_OVERLAYS or
PRODUCT_PACKAGE_OVERLAYS variables that you set to a path
to a directory in your device folder

▶ This directory should contain a structure similar to the source
tree one, with only the files that you want to override

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 256/444

Add a device overlay

$(call inherit-product, build/target/product/generic.mk)

PRODUCT_PACKAGES += FooBar

PRODUCT_COPY_FILES += \
device/mybrand/mydevice/vold.fstab:system/etc/vold.fstab

DEVICE_PACKAGE_OVERLAYS := device/mybrand/mydevice/overlay

PRODUCT_NAME := full_mydevice
PRODUCT_DEVICE := mydevice
PRODUCT_MODEL := Full flavor of My Brand New Device

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 257/444

Board Definition

▶ You will also need a BoardConfig.mk file along with the
product definition

▶ While the product definition was mostly about the build
system in itself, the board definition is more about the
hardware

▶ However, this is poorly documented and sometimes
ambiguous so you will probably have to dig into the
build/core/Makefile at some point to see what a given
variable does

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 258/444

Minimal Board Definition

TARGET_NO_BOOTLOADER := true
TARGET_NO_KERNEL := true
TARGET_CPU_ABI := armeabi
HAVE_HTC_AUDIO_DRIVER := true
BOARD_USES_GENERIC_AUDIO := true

USE_CAMERA_STUB := true

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 259/444

Other Board Variables 1/2

▶ TARGET_ARCH_VARIANT
▶ Variant of the selected architecture (for example

armv7-a-neon for most Cortex-A8 and A9 CPUs)
▶ TARGET_EXTRA_CFLAGS

▶ Extra C compiler flags to use during the whole build
▶ TARGET_CPU_SMP

▶ Does the CPU have multiple cores?
▶ TARGET_USERIMAGES_USE_EXT4

▶ We want to use ext4 filesystems for our generated partitions
▶ BOARD_SYSTEMIMAGE_PARTITION_SIZE

▶ Size of the system partitions in bytes.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 260/444

Other Board Variables 2/2

▶ BOARD_NAND_PAGE_SIZE
▶ For NAND flash, size of the pages as given by the datasheet

▶ TARGET_NO_RECOVERY
▶ We don’t want to build the recovery image

▶ BOARD_KERNEL_CMDLINE
▶ Boot arguments of the kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 261/444

Kernel Integration into Android

▶ Android is just a user space software stack, the build system
isn’t designed to build the kernel

▶ However, there is some facilities to integrate a precompiled
kernel into an Android image

▶ To do so, you need to:
▶ In BoardConfig.mk

▶ Remove TARGET_NO_KERNEL if set
▶ Set BOARD_KERNEL_BASE to the load address of your kernel

▶ In your device Makefile, have something like
ifeq ($(TARGET_PREBUILT_KERNEL),)
LOCAL_KERNEL := device/ti/panda/kernel
else
LOCAL_KERNEL := $(TARGET_PREBUILT_KERNEL)
endif

PRODUCT_COPY_FILES := \
$(LOCAL_KERNEL):kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 262/444

Practical lab - System Customization

▶ Use the product configuration
system

▶ Change the default wallpaper
▶ Add extra properties to the system
▶ Use the product overlays

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 263/444

Android Native Layer

Android Native
Layer

© Copyright 2004-2019, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 264/444

Android Native Layer

Definition and Components

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 265/444

Definition (1)

▶ The usual development tools available on a GNU/Linux
workstation is a native toolchain

▶ This toolchain runs on your workstation and generates code
for your workstation, usually x86

▶ For embedded system development, it is usually impossible or
not interesting to use a native toolchain
▶ The target is too restricted in terms of storage and/or memory
▶ The target is very slow compared to your workstation
▶ You may not want to install all development tools on your

target.
▶ Therefore, cross-compiling toolchains are generally used.

They run on your workstation but generate code for your
target.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 266/444

Definition (2)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 267/444

Machines in build procedures

▶ Three machines must be distinguished when discussing
toolchain creation
▶ The build machine, where the toolchain is built.
▶ The host machine, where the toolchain will be executed.
▶ The target machine, where the binaries created by the

toolchain are executed.
▶ Four common build types are possible for toolchains

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 268/444

Different toolchain build procedures

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 269/444

Components

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 270/444

Binutils

▶ Binutils is a set of tools to generate and manipulate binaries
for a given CPU architecture
▶ as, the assembler, that generates binary code from assembler

source code
▶ ld, the linker
▶ ar, ranlib, to generate .a archives, used for libraries
▶ objdump, readelf, size, nm, strings, to inspect binaries.

Very useful analysis tools!
▶ objcopy, to modify binaries
▶ strip, to strip parts of binaries that are just needed for

debugging (reducing their size).
▶ http://www.gnu.org/software/binutils/

▶ GPL license

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 271/444

http://www.gnu.org/software/binutils/

Kernel headers (1)

▶ The C library and compiled
programs needs to interact with
the kernel
▶ Available system calls and their

numbers
▶ Constant definitions
▶ Data structures, etc.

▶ Therefore, compiling the C library
requires kernel headers, and many
applications also require them.

▶ Available in <linux/...> and
<asm/...> and a few other
directories corresponding to the
ones visible in include/ in the
kernel sources

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 272/444

Kernel headers (2)

▶ System call numbers, in <asm/unistd.h>

#define __NR_exit 1
#define __NR_fork 2
#define __NR_read 3

▶ Constant definitions, here in <asm-generic/fcntl.h>,
included from <asm/fcntl.h>, included from
<linux/fcntl.h>

#define O_RDWR 00000002

▶ Data structures, here in <asm/stat.h>

struct stat {
unsigned long st_dev;
unsigned long st_ino;
[...]

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 273/444

Kernel headers (3)

▶ The kernel to user space ABI is backward compatible
▶ Binaries generated with a toolchain using kernel headers older

than the running kernel will work without problem, but won’t
be able to use the new system calls, data structures, etc.

▶ Binaries generated with a toolchain using kernel headers newer
than the running kernel might work on if they don’t use the
recent features, otherwise they will break

▶ Using the latest kernel headers is not necessary, unless access
to the new kernel features is needed

▶ The kernel headers are extracted from the kernel sources using
the headers_install kernel Makefile target.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 274/444

C/C++ compiler

▶ GCC: GNU Compiler Collection, the famous free
software compiler

▶ http://gcc.gnu.org/

▶ Can compile C, C++, Ada, Fortran, Java,
Objective-C, Objective-C++, Go, etc. Can
generate code for a large number of CPU
architectures, including ARM, AVR, Blackfin,
CRIS, FRV, M32, MIPS, MN10300, PowerPC,
SH, v850, x86, x86_64, IA64, Xtensa, etc.

▶ Available under the GPL license, libraries under
the GPL with linking exception.

▶ Alternative: Clang / LLVM compiler
(http://clang.llvm.org/) getting increasingly
popular and able to compile most programs
(license: MIT/BSD type)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 275/444

http://gcc.gnu.org/
http://clang.llvm.org/

C library

▶ The C library is an essential
component of a Linux system
▶ Interface between the

applications and the kernel
▶ Provides the well-known standard

C API to ease application
development

▶ Several C libraries are available:
glibc, uClibc, musl, klibc, newlib...

▶ The choice of the C library must be
made at cross-compiling toolchain
generation time, as the GCC
compiler is compiled against a
specific C library.

Linux
process
scheduler

Linux
memory
manager

IPC
manager

I/O
interface

Network
interface

Virtual
file

system

Linux-specific

Application

system calls

system calls

functioncalls

functi
on

ca
lls

by Shmuel Csaba Otto Traian; GNU FDL 1.3 & CC-BY-SA 3.0; created 2014-02-27, last updated 2014-03-25

BusyBox
et al.

Application
POSIX-compatible

Source: Wikipedia (http://bit.ly/2zrGve2)

Comparing libcs by feature:
http://www.etalabs.net/compare_libcs.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 276/444

http://bit.ly/2zrGve2
http://www.etalabs.net/compare_libcs.html

Android Native Layer

Bionic

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 277/444

Whole Android Stack

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 278/444

Bionic 1/2

▶ Google developed another C library for Android: Bionic.
They didn’t start from scratch however, they based their work
on the BSD standard C library.

▶ The most remarkable thing about Bionic is that it doesn’t
have full support for the POSIX API, so it might be a hurdle
when porting an already developed program to Android.

▶ Among other things, are lacking:
▶ Full pthreads API
▶ No locales and wide chars support
▶ No openpty(), syslog(), crypt(), functions
▶ Removed dependency on the /etc/resolv.conf and

/etc/passwd files and using Android’s own mechanisms
instead

▶ Some functions are still unimplemented (see
getprotobyname()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 279/444

Bionic 2/2

▶ However, Bionic has been created this way for a number of
reasons
▶ Keep the libc implementation as simple as possible, so that it

can be fast and lightweight (Bionic is a bit smaller than uClibc)
▶ Keep the (L)GPL code out of the user space. Bionic is under

the BSD license
▶ And it implements some Android-specifics functions as well:

▶ Access to system properties
▶ Logging events in the system logs

▶ In the prebuilt/ directory, Google provides a prebuilt
toolchain that uses Bionic

▶ See http://androidxref.com/4.0.4/xref/ndk/docs/
system/libc/OVERVIEW.html for details about Bionic.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 280/444

http://androidxref.com/4.0.4/xref/ndk/docs/system/libc/OVERVIEW.html
http://androidxref.com/4.0.4/xref/ndk/docs/system/libc/OVERVIEW.html

Android Native Layer

Toolbox

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 281/444

Whole Android Stack

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 282/444

Why Toolbox?

▶ A Linux system needs a basic set of programs to work
▶ An init program
▶ A shell
▶ Various basic utilities for file manipulation and system

configuration
▶ In normal Linux systems, these programs are provided by

different projects
▶ coreutils, bash, grep, sed, tar, wget, modutils, etc. are all

different projects
▶ Many different components to integrate
▶ Components not designed with embedded systems constraints

in mind: they are not very configurable and have a wide range
of features

▶ Busybox is an alternative solution, extremely common on
embedded systems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 283/444

General purpose toolbox: BusyBox

▶ Rewrite of many useful Unix command line utilities
▶ Integrated into a single project, which makes it easy to work

with
▶ Designed with embedded systems in mind: highly configurable,

no unnecessary features
▶ All the utilities are compiled into a single executable,

/bin/busybox
▶ Symbolic links to /bin/busybox are created for each

application integrated into Busybox
▶ For a fairly featureful configuration, less than 500 KB

(statically compiled with uClibc) or less than 1 MB (statically
compiled with glibc).

▶ http://www.busybox.net/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 284/444

http://www.busybox.net/

BusyBox commands!

Commands available in BusyBox 1.13
[, [[, addgroup, adduser, adjtimex, ar, arp, arping, ash, awk, basename, bbconfig, bbsh, brctl,
bunzip2, busybox, bzcat, bzip2, cal, cat, catv, chat, chattr, chcon, chgrp, chmod, chown, chpasswd,
chpst, chroot, chrt, chvt, cksum, clear, cmp, comm, cp, cpio, crond, crontab, cryptpw, cttyhack,
cut, date, dc, dd, deallocvt, delgroup, deluser, depmod, devfsd, df, dhcprelay, diff, dirname,
dmesg, dnsd, dos2unix, dpkg, dpkg_deb, du, dumpkmap, dumpleases, e2fsck, echo, ed, egrep, eject,
env, envdir, envuidgid, ether_wake, expand, expr, fakeidentd, false, fbset, fbsplash, fdflush,
fdformat, fdisk, fetchmail, fgrep, find, findfs, fold, free, freeramdisk, fsck, fsck_minix, ftpget,
ftpput, fuser, getenforce, getopt, getsebool, getty, grep, gunzip, gzip, halt, hd, hdparm, head,
hexdump, hostid, hostname, httpd, hush, hwclock, id, ifconfig, ifdown, ifenslave, ifup, inetd, init,
inotifyd, insmod, install, ip, ipaddr, ipcalc, ipcrm, ipcs, iplink, iproute, iprule, iptunnel, kbd_
mode, kill, killall, killall5, klogd, lash, last, length, less, linux32, linux64, linuxrc, ln, load_
policy, loadfont, loadkmap, logger, login, logname, logread, losetup, lpd, lpq, lpr, ls, lsattr,
lsmod, lzmacat, makedevs, man, matchpathcon, md5sum, mdev, mesg, microcom, mkdir, mke2fs, mkfifo,
mkfs_minix, mknod, mkswap, mktemp, modprobe, more, mount, mountpoint, msh, mt, mv, nameif, nc,
netstat, nice, nmeter, nohup, nslookup, od, openvt, parse, passwd, patch, pgrep, pidof, ping, ping6,
pipe_progress, pivot_root, pkill, poweroff, printenv, printf, ps, pscan, pwd, raidautorun, rdate,
rdev, readahead, readlink, readprofile, realpath, reboot, renice, reset, resize, restorecon, rm,
rmdir, rmmod, route, rpm, rpm2cpio, rtcwake, run_parts, runcon, runlevel, runsv, runsvdir, rx,
script, sed, selinuxenabled, sendmail, seq, sestatus, setarch, setconsole, setenforce, setfiles,
setfont, setkeycodes, setlogcons, setsebool, setsid, setuidgid, sh, sha1sum, showkey, slattach,
sleep, softlimit, sort, split, start_stop_daemon, stat, strings, stty, su, sulogin, sum, sv, svlogd,
swapoff, swapon, switch_root, sync, sysctl, syslogd, tac, tail, tar, taskset, tcpsvd, tee, telnet,
telnetd, test, tftp, tftpd, time, top, touch, tr, traceroute, true, tty, ttysize, tune2fs, udhcpc,
udhcpd, udpsvd, umount, uname, uncompress, unexpand, uniq, unix2dos, unlzma, unzip, uptime, usleep,
uudecode, uuencode, vconfig, vi, vlock, watch, watchdog, wc, wget, which, who, whoami, xargs, yes,
zcat, zcip

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 285/444

Toolbox

▶ As Busybox is under the GPL, Google developed an equivalent
tool, under the BSD license

▶ Much fewer UNIX commands implemented than Busybox, but
other commands to use the Android-specifics mechanism,
such as alarm, getprop or a modified log

Commands available in Toolbox in Jelly Bean
alarm, cat, chcon, chmod, chown, cmp, cp, date, dd, df, dmesg, du, dynarray, exists, getenforce,
getevent, getprop, getsebool, grep, hd, id, ifconfig, iftop, insmod, ioctl, ionice, kill, ln, load_
policy, log, ls, lsmod, lsof, lsusb, md5, mkdir, mount, mv, nandread, netstat, newfs_msdos, notify,
printenv, ps, r, readtty, reboot, renice, restorecon, rm, rmdir, rmmod, rotatefb, route, runcon,
schedtop, sendevent, setconsole, setenforce, setkey, setprop, setsebool, sleep, smd, start, stop,
sync, syren, top, touch, umount, uptime, vmstat, watchprops, wipe

▶ The shell is provided by an external project, mksh, which is a
BSD-licenced implementation of ksh

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 286/444

Android Native Layer

Init

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 287/444

Whole Android Stack

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 288/444

Init

▶ init is the name of the first user space program
▶ It is up to the kernel to start it, with PID 1, and the program

should never exit during system life
▶ The kernel will look for init at /sbin/init, /bin/init,

/etc/init and /bin/sh. You can tweak that with the init=
kernel parameter

▶ The role of init is usually to start other applications at boot
time, a shell, mount the various filesystems, etc.

▶ Init also manages the shutdown of the system by undoing all
it has done at boot time

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 289/444

Android’s init

▶ Once again, Google has developed his own instead of relying
on an existing one.

▶ However, it has some interesting features, as it can also be
seen as a daemon on the system
▶ it manages device hotplugging, with basic permissions rules for

device files, and actions at device plugging and unplugging
▶ it monitors the services it started, so that if they crash, it can

restart them
▶ it monitors system properties so that you can take actions

when a particular one is modified

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 290/444

Init part

▶ For the initialization part, init mounts the various filesystems
(/proc, /sys, data, etc.)

▶ This allows to have an already setup environment before
taking further actions

▶ Once this is done, it reads the init.rc file and executes it

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 291/444

init.rc file interpretation

▶ Uses a unique syntax, based on events
▶ There usually are several init configuration files, the main

init.rc file itself, plus the extra file included from it
▶ By default, these included files hold either subsystem-specific

initialisation (USB, Kernel Tracing), or hardware-specific
instructions

▶ It relies on system properties, evaluated at runtime, that
allows to have on the same system, configuration for several
different platforms, that will be used only when they are
relevant.

▶ Most of the customizations should therefore go to the
platform-specific configuration file rather than to the generic
one

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 292/444

Syntax

▶ Unlike most init script systems, the configuration relies on
system event and system property changes, allowed by the
daemon part of it

▶ This way, you can trigger actions not only at startup or at
run-level changes like with traditional init systems, but also at
a given time during system life

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 293/444

Actions

on <trigger>
command
command

▶ Here are a few trigger types:
▶ boot

▶ Triggered when init is loaded
▶ <property>=<value>

▶ Triggered when the given property is set to the given value
▶ device-added-<path>

▶ Triggered when the given device node is added or removed
▶ service-exited-<name>

▶ Triggered when the given service exits

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 294/444

Init triggers

▶ Commands are also specific to Android, with sometimes a
syntax very close to the shell one (just minor differences):

▶ The complete list of triggers, by execution order is:
▶ early-init
▶ init
▶ early-fs
▶ fs
▶ post-fs
▶ early-boot
▶ boot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 295/444

Example

import /init.${ro.hardware}.rc

on boot
export PATH /sbin:/system/sbin:/system/bin
export LD_LIBRARY_PATH /system/lib

mkdir /dev
mkdir /proc
mkdir /sys

mount tmpfs tmpfs /dev
mkdir /dev/pts
mkdir /dev/socket
mount devpts devpts /dev/pts
mount proc proc /proc
mount sysfs sysfs /sys

write /proc/cpu/alignment 4
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 296/444

Services

service <name> <pathname> [<argument>]*
<option>
<option>

▶ Services are like daemons
▶ They are started by init, managed by it, and can be restarted

when they exit
▶ Many options, ranging from which user to run the service as,

rebooting in recovery when the service crashes too frequently,
to launching a command at service reboot.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 297/444

Example

on device-added-/dev/compass
start akmd

on device-removed-/dev/compass
stop akmd

service akmd /sbin/akmd
disabled
user akmd
group akmd

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 298/444

Uevent

▶ Init also manages the runtime events generated by the kernel
when hardware is plugged in or removed, like udev does on a
standard Linux distribution

▶ This way, it dynamically creates the devices nodes under /dev
▶ You can also tweak its behavior to add specific permissions to

the files associated to a new event.
▶ The associated configuration files are /ueventd.rc and

/ueventd.<platform>.rc

▶ While ueventd.rc is always taken into account,
ueventd.<platform>.rc is only interpreted if the platform
currently running the system reports the same name

▶ This name is either obtained by reading the file
/proc/cpuinfo or from the androidboot.hardware kernel
parameter

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 299/444

ueventd.rc syntax

<path> <permission> <user> <group>

▶ Example

/dev/bus/usb/* 0660 root usb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 300/444

Properties

▶ Init also manages the system properties
▶ Properties are a way used by Android to share values across

the system that are not changing quite often
▶ Quite similar to the Windows Registry
▶ These properties are splitted into several files:

▶ /system/build.prop which contains the properties generated
by the build system, such as the date of compilation

▶ /default.prop which contains the default values for certain
key properties, mostly related to the security and permissions
for ADB.

▶ /data/local.prop which contains various properties specific
to the device

▶ /data/property is a folder which purpose is to be able to edit
properties at run-time and still have them at the next reboot.
This folder is storing every properties prefixed by persist. in
separate files containing the values.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 301/444

Modifying Properties

▶ You can add or modify properties in the build system by using
either the PRODUCT_PROPERTY_OVERRIDES makefile variable, or
by defining your own system.prop file in the device directory.
Their content will be appended to /system/build.prop at
compilation time

▶ Modify the init.rc file so that at boot time it exports these
properties using the setprop command

▶ Using the API functions such as the Java function
SystemProperties.set

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 302/444

Permissions on the Properties

▶ Android, by default, only allows any given process to read the
properties.

▶ You can set write permissions on a particular property or a group of
them using the file system/core/init/property_service.c

/* White list of permissions for setting property services. */
struct {

const char *prefix;
unsigned int uid;
unsigned int gid;

} property_perms[] = {
{ "net.rmnet0.", AID_RADIO, 0 },
{ "net.dns", AID_RADIO, 0 },
{ "net.", AID_SYSTEM, 0 },
{ "dhcp.", AID_SYSTEM, 0 },
{ "log.", AID_SHELL, 0 },
{ "service.adb.root", AID_SHELL, 0 },
{ "persist.security.", AID_SYSTEM, 0 },
{ NULL, 0, 0 }

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 303/444

Special Properties

▶ ro.* properties are read-only. They can be set only once in
the system life-time. You can only change their value by
modifying the property files and reboot.

▶ persist.* properties are stored on persistent storage each
time they are set.

▶ ctl.start and ctl.stop properties used instead of storing
properties to start or stop the service name passed as the new
value

▶ net.change property holds the name of the last net.*
property changed.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 304/444

Android Native Layer

Various daemons

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 305/444

Whole Android Stack

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 306/444

Vold

▶ The VOLume Daemon
▶ Just like init does, monitors new device events
▶ While init was only creating device files and taking some

configured options, vold actually only cares about storage
devices

▶ Its roles are to:
▶ Auto-mount the volumes
▶ Format the partitions on the device

▶ There is no /etc/fstab in Android, but
/system/etc/vold.fstab has a somewhat similar role

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 307/444

rild

▶ rild is the Radio Interface Layer Daemon
▶ This daemon drives the telephony stack, both voice and data

communication
▶ When using the voice mode, talks directly to the baseband,

but when issuing data transfers, relies on the kernel network
stack

▶ It can handle two types of commands:
▶ Solicited commands: commands that originate from the user:

dial a number, send an SMS, etc.
▶ Unsolicited commands: commands that come from the

baseband: receiving an SMS, a call, signal strength changed,
etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 308/444

Others

▶ netd
▶ netd manages the various network connections: Bluetooth,

Wifi, USB
▶ Also takes any associated actions: detect new connections, set

up the tethering, etc.
▶ It really is an equivalent to NetworkManager
▶ On a security perspective, it also allows to isolate

network-related privileges in a single process
▶ installd

▶ Handles package installation and removal
▶ Also checks package integrity, installs the native libraries on

the system, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 309/444

Android Native Layer

SurfaceFlinger

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 310/444

Introduction to graphical stacks

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 311/444

Compositing window managers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 312/444

SurfaceFlinger

▶ This difference in design adds some interesting features:
▶ Effects are easy to implement, as it’s up to the window

manager to mangle the various surfaces at will to display them
on the screen. Thus, you can add transparency, 3d effects, etc.

▶ Improved stability. With a regular window manager, a message
is sent to every window to redraw its part of the screen, for
example when a window has been moved. But if an application
fails to redraw, the windows will become glitchy. This will not
happen with a compositing WM, as it will still display the
untouched surface.

▶ SurfaceFlinger is the compositing window manager in
Android, providing surfaces to applications and rendering all
of them with hardware acceleration.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 313/444

SurfaceFlinger

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 314/444

Android Native Layer

Stagefright

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 315/444

Stagefright

▶ StageFright is the multimedia playback engine in Android
since Eclair

▶ In its goals, it is quite similar to GStreamer: Provide an
abstraction on top of codecs and libraries to easily play
multimedia files

▶ It uses a plugin system, to easily extend the number of
formats supported, either software or hardware decoded

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 316/444

StageFright Architecture

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 317/444

StageFright plugins

▶ To add support for a new format, you need to:
▶ Develop a new Extractor class, if the container is not

supported yet.
▶ Develop a new Decoder class, that implements the interface

needed by the StageFright core to read the data.
▶ Associate the mime-type of the files to read to your new

Decoder in the /etc/media_codecs.xml file provided by your
device, either in the Decoders list.

▶ → No runtime extension of the decoders, this is done at
compilation time.

<Decoders>
<MediaCodec name="OMX.google.vorbis.decoder" type="audio/vorbis" />
<MediaCodec name="OMX.qcom.video.decoder.avc" type="video/avc" />

</Decoders>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 318/444

Android Native Layer

Dalvik and Zygote

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 319/444

Whole Android Stack

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 320/444

Dalvik

▶ Dalvik is the virtual machine, executing Android applications
▶ It is an interpreter written in C/C++, and is designed to be

portable, lightweight and run well on mobile devices
▶ It is also designed to allow several instances of it to be run at

the same time while consuming as little memory as possible
▶ Two execution modes

▶ portable: the interpreter is written in C, quite slow, but
should work on all platforms

▶ fast: Uses the mterp mechanism, to define routines either in
assembly or in C optimized for a specific platform. Instruction
dispatching is also done by computing the handler address
from the opcode number

▶ It uses the Apache Harmony Java framework for its core
libraries

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 321/444

Zygote

▶ Dalvik is started by Zygote

▶ frameworks/base/cmds/app_process
▶ At boot, Zygote is started by init, it then

▶ Initializes a virtual machine in its address space
▶ Loads all the basic Java classes in memory
▶ Starts the system server
▶ Waits for connections on a UNIX socket

▶ When a new application should be started:
▶ Android connects to Zygote through the socket to request the

start of a new application
▶ Zygote forks
▶ The child process loads the new application and start

executing it

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 322/444

Android Native Layer

Hardware Abstraction Layer

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 323/444

Whole Android Stack

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 324/444

Hardware Abstraction Layers

▶ Usually, the kernel already provides a HAL for user space
▶ However, from Google’s point of view, this HAL is not

sufficient and suffers some restrictions, mostly:
▶ Depending on the subsystem used in the kernel, the user space

interface differs
▶ All the code in the kernel must be GPL-licensed

▶ Google implemented its HAL with dynamically loaded user
space libraries

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 325/444

Library naming

▶ It follows the same naming scheme as for init: the generic
implementation is called libfoo.so and the hardware-specific
one libfoo.hardware.so

▶ The name of the hardware is looked up with the following
properties:
▶ ro.hardware
▶ ro.product.board
▶ ro.board.platform
▶ ro.arch

▶ The libraries are then searched for in the directories:
▶ /vendor/lib/hw
▶ /system/lib/hw

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 326/444

Various layers

▶ Audio (libaudio.so) configuration, mixing, noise
cancellation, etc.
▶ hardware/libhardware/include/audio.h

▶ Graphics (gralloc.so, hwcomposer.so, libhgl.so) handles
graphic memory buffer allocations, OpenGL implementation,
etc.
▶ libhgl.so should be provided by your vendor
▶ hardware/libhardware/include/gralloc.h
▶ hardware/libhardware/include/hwcomposer.h

▶ Camera (libcamera.so) handles the camera functions:
autofocus, take a picture, etc.
▶ hardware/libhardware/include/camera{2,3}.h

▶ GPS (libgps.so) configuration, data acquisition
▶ hardware/libhardware/include/hardware/gps.h

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 327/444

Various layers

▶ Lights (liblights.so) Backlight and LEDs management
▶ hardware/libhardware/include/lights.h

▶ Sensors (libsensors.so) handles the various sensors on the
device: Accelerometer, Proximity Sensor, etc.
▶ hardware/libhardware/include/sensors.h

▶ Radio Interface (libril-vendor-version.so) manages all
communication between the baseband and rild
▶ You can set the name of the library with the rild.lib and

rild.libargs properties to find the library
▶ hardware/ril/include/telephony/ril.h

▶ Bluetooth (libbluetooth.so) Discovery and communication
with Bluetooth devices
▶ hardware/libhardware/include/bluetooth.h

▶ NFC (libnfc.so) Discover NFC devices, communicate with
it, etc.
▶ hardware/libhardware/include/nfc.h

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 328/444

Example: rild

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 329/444

Android Native Layer

JNI

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 330/444

Whole Android Stack

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 331/444

What is JNI?

▶ A Java framework to call and be called by native applications
written in other languages

▶ Mostly used for:
▶ Writing Java bindings to C/C++ libraries
▶ Accessing platform-specific features
▶ Writing high-performance sections

▶ It is used extensively across the Android user space to interface
between the Java Framework and the native daemons

▶ Since Gingerbread, you can develop apps in a purely native
way, possibly calling Java methods through JNI

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 332/444

C Code

#include "jni.h"

JNIEXPORT void JNICALL Java_com_example_Print_print(JNIEnv *env,
jobject obj,
jstring javaString)

{
const char *nativeString = (*env)->GetStringUTFChars(env,

javaString,
0);

printf("%s", nativeString);
(*env)->ReleaseStringUTFChars(env, javaString, nativeString);

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 333/444

JNI arguments

▶ Function prototypes are following the template:
JNIEXPORT jstring JNICALL Java_ClassName_MethodName

(JNIEnv*, jobject)

▶ JNIEnv is a pointer to the JNI Environment that we will use
to interact with the virtual machine and manipulate Java
objects within the native methods

▶ jobject contains a pointer to the calling object. It is very
similar to this in C++

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 334/444

Types

▶ There is no direct mapping between C Types and JNI types
▶ You must use the JNI primitives to convert one to his

equivalent
▶ However, there are a few types that are directly mapped, and

thus can be used directly without typecasting:

Native Type JNI Type
unsigned char jboolean
signed char jbyte

unsigned short jchar
short jshort
long jint

long long jlong
float jfloat

double jdouble

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 335/444

Java Code

package com.example;

class Print
{

private static native void print(String str);

public static void main(String[] args)
{

Print.print("HelloWorld!");
}

static
{

System.loadLibrary("print");
}

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 336/444

Calling a method of a Java object from C

JNIEXPORT void JNICALL Java_ClassName_Method(JNIEnv *env,
jobject obj)

{
jclass cls = (*env)->GetObjectClass(env, obj);
jmethodID hello = (*env)->GetMethodID(env,

cls,
"hello",
"(V)V");

if (!hello)
return;

(*env)->CallVoidMethod(env, obj, hello);
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 337/444

Instantiating a Java object from C

JNIEXPORT jobject JNICALL Java_ClassName_Method(JNIEnv *env,
jobject obj)

{
jclass cls = env->FindClass("java/util/ArrayList");
jmethodID init = env->GetMethodID(cls,

"<init>",
"()V");

jobject array = env->NewObject(cls, init);

return array;
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 338/444

Practical lab - Develop a JNI library

▶ Develop bindings from Java to C
▶ Integrate these bindings into the

build system

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 339/444

Android Framework and Applications

Android
Framework and
Applications

© Copyright 2004-2019, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 340/444

Android Framework and Applications

Service Manager and Various Services

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 341/444

Whole Android Stack

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 342/444

System Server boot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 343/444

The first step: system_server.c

▶ Located in frameworks/base/cmds/system_server

▶ Started by Zygote through the SystemServer
▶ Starts all the various native services:

▶ SurfaceFlinger
▶ SensorService

▶ It then calls back the SystemServer object’s init2 function to
go on with the initialization

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 344/444

Java Services Initialization

▶ Located in frameworks/base/services/java/com/android/
server/SystemServer.java

▶ Starts all the different Java services in a different thread by
registering them into the Service Manager

▶ PowerManager, ActivityManager (also handles the
ContentProviders), PackageManager, BatteryService,
LightsService, VibratorService, AlarmManager,
WindowManager, BluetoothService, DevicePolicyManager,
StatusBarManager, InputMethodManager,
ConnectivityService, MountService,
NotificationManager, LocationManager, AudioService,
...

▶ If you wish to add a new system service, you will need to add
it to one of these two parts to register it at boot time

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 345/444

Android Framework and Applications

Inter-Process Communication, Binder
and AIDLs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 346/444

Whole Android Stack

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 347/444

IPCs

▶ On modern systems, each process has its own address space,
allowing to isolate data

▶ This allows for better stability and security: only a given process can
access its address space. If another process tries to access it, the
kernel will detect it and kill this process.

▶ However, interactions between processes are sometimes needed,
that’s what IPCs are for.

▶ On classic Linux systems, several IPC mechanisms are used:
▶ Signals
▶ Semaphores
▶ Sockets
▶ Message queues
▶ Pipes
▶ Shared memory

▶ Android, however, uses mostly:
▶ Binder
▶ Ashmem and Sockets

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 348/444

Binder 1/2

▶ Uses shared memory for high performance
▶ Uses reference counting to garbage collect objects no longer in

use
▶ Data are sent through parcels, which is some kind of

serialization
▶ Used across the whole system, e.g., clients connect to the

window manager through Binder, which in turn connects to
SurfaceFlinger using Binder

▶ Each object has an identity, which does not change, even if
you pass it to other processes.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 349/444

Binder 2/2

▶ This is useful if you want to separate components in distinct
processes, or to manage several components of a single
process (i.e. Activity’s Windows).

▶ Object identity is also used for security. Some token passed
correspond to specific permissions. Another security model to
enforce permissions is for every transaction to check on the
calling UID.

▶ Binder also supports one-way and two-way messages

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 350/444

Binder Mechanism

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 351/444

Binder Implementation 1/2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 352/444

Binder Implementation 2/2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 353/444

Android Interface Definition Language (AIDL)

▶ Very similar to any other Interface Definition Language you
might have encountered

▶ Describes a programming interface for the client and the
server to communicate using IPCs

▶ Looks a lot like Java interfaces. Several types are already
defined, however, and you can’t extend this like what you can
do in Java:
▶ All Java primitive types (int, long, boolean, etc.)
▶ String
▶ CharSequence
▶ Parcelable
▶ List of one of the previous types
▶ Map

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 354/444

AIDLs HelloWorld

package com.example.android;

interface IRemoteService {
void HelloPrint(String aString);

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 355/444

Parcelable Objects

▶ If you want to add extra objects to the AIDLs, you need to
make them implement the Parcelable interface

▶ Most of the relevant Android objects already implement this
interface.

▶ This is required to let Binder know how to serialize and
deserialize these objects

▶ However, this is not a general purpose serialization
mechanism. Underlying data structures may evolve, so you
should not store parcelled objects to persistent storage

▶ Has primitives to store basic types, arrays, etc.
▶ You can even serialize file descriptors!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 356/444

Implement Parcelable Classes

▶ To make an object parcelable, you need to:
▶ Make the object implement the Parcelable interface
▶ Implement the writeToParcel function, which stores the

current state of the object to a Parcel object
▶ Add a static field called CREATOR, which implements the

Parcelable.Creator interface, and takes a Parcel,
deserializes the values and returns the object

▶ Create an AIDL file that declares your new parcelable class
▶ You should also consider Bundles, that are type-safe key-value

containers, and are optimized for reading and writing values

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 357/444

Intents

▶ Intents are a high-level use of Binder
▶ They describe the intention to do something
▶ They are used extensively across Android

▶ Activities, Services and BroadcastReceivers are started using
intents

▶ Two types of intents:
explicit The developer designates the target by its name
implicit There is no explicit target for the Intent. The

system will find the best target for the Intent by
itself, possibly asking the user what to do if
there are several matches

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 358/444

Android Framework and Applications

Various Java Services

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 359/444

Whole Android Stack

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 360/444

Android Java Services

▶ There are lots of services implemented in Java in Android
▶ They abstract most of the native features to make them

available in a consistent way
▶ You get access to the system services using the

Context.getSystemService() call
▶ You can find all the accessible services in the documentation

for this function

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 361/444

ActivityManager

▶ Manages everything related to Android applications
▶ Starts Activities and Services through Zygote
▶ Manages their lifecycle
▶ Fetches content exposed through content providers
▶ Dispatches the implicit intents
▶ Adjusts the Low Memory Killer priorities
▶ Handles non responding applications

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 362/444

PackageManager

▶ Exposes methods to query and manipulate already installed
packages, so you can:
▶ Get the list of packages
▶ Get/Set permissions for a given package
▶ Get various details about a given application (name, uids, etc)
▶ Get various resources from the package

▶ You can even install/uninstall an apk
▶ installPackage/uninstallPackage functions are hidden in

the source code, yet public.
▶ You can’t compile code that is calling directly these functions

and they are not documented anywhere except in the code
▶ But you can call them through the Java Reflection API, if

you have the proper permissions of course

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 363/444

PowerManager

▶ Abstracts the Wakelocks functionality
▶ Defines several states, but when a wakelock is grabbed, the

CPU will always be on
▶ PARTIAL_WAKE_LOCK

▶ Only the CPU is on, screen and keyboard backlight are off
▶ SCREEN_DIM_WAKE_LOCK

▶ Screen backlight is partly on, keyboard backlight is off
▶ SCREEN_BRIGHT_WAKE_LOCK

▶ Screen backlight is on, keyboard backlight is off
▶ FULL_WAKE_LOCK

▶ Screen and keyboard backlights are on

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 364/444

AlarmManager

▶ Abstracts the Android timers
▶ Allows to set a one time timer or a repetitive one
▶ When a timer expires, the AlarmManager grabs a wakelock,

sends an Intent to the corresponding application and releases
the wakelock once the Intent has been handled

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 365/444

ConnectivityManager and WifiManager

▶ ConnectivityManager
▶ Manages the various network connections

▶ Falls back to other connections when one fails
▶ Notifies the system when one becomes available/unavailable
▶ Allows the applications to retrieve various information about

connectivity
▶ WifiManager

▶ Provides an API to manage all aspects of WiFi networks
▶ List, modify or delete already configured networks
▶ Get information about the current WiFi network if any
▶ List currently available WiFi networks
▶ Sends Intents for every change in WiFi state

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 366/444

Example: Vibrator Service

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 367/444

Android Framework and Applications

Extend the framework

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 368/444

Why extend it?

▶ You might want to extend the existing Android framework to
add new features or allow other applications to use specific
devices available on your hardware

▶ As you have the code, you could just hack the source to make
the framework suit your needs

▶ This is quite problematic however:
▶ You might break the API, introduce bugs, etc
▶ Google requires you not to modify the Android public API
▶ It is painful to track changes across the tree, to port the

changes to new versions
▶ You don’t always want to have such extensions for all your

products
▶ As usual with Android, there’s a device-specific way of

extending the framework: PlatformLibraries

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 369/444

PlatformLibraries

▶ The modifications are just plain Java libraries
▶ You can declare any namespace you want, do whatever code

you want.
▶ However, they are bundled as raw Java archives, so you

cannot embed resources in the modifications
▶ If you would still do this, you can add them to

frameworks/base/res, but you have to hide them
▶ When using the Google Play Store, all the libraries including

these ones are submitted to Google, so that it can filter out
apps relying on libraries not available on your system

▶ To avoid any application to link to any jar file, you have to
declare both in your application and in your library that you
will use and add a custom library

▶ The library’s xml permission file should go into the
/system/etc/permissions folder

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 370/444

PlatformLibrary Makefile

LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)

LOCAL_SRC_FILES := \
$(call all-subdir-java-files)

LOCAL_MODULE_TAGS := optional

LOCAL_MODULE:= com.example.android.pl

include $(BUILD_JAVA_LIBRARY)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 371/444

PlatformLibrary permissions file

<?xml version="1.0" encoding="utf-8"?>
<permissions>

<library name="com.example.android.pl"
file="/system/framework/com.example.android.pl.jar"/>

</permissions>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 372/444

PlatformLibrary Client Makefile

LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE_TAGS := optional

LOCAL_PACKAGE_NAME := PlatformLibraryClient

LOCAL_SRC_FILES := $(call all-java-files-under, src)

LOCAL_JAVA_LIBRARIES := com.example.android.pl

include $(BUILD_PACKAGE)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 373/444

Practical lab - Develop a Framework Component

▶ Modify the Android framework
▶ Use JNI bindings

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 374/444

Android Application Development

Android
Application
Development

© Copyright 2004-2019, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 375/444

Android Application Development

Basics

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 376/444

Whole Android Stack

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 377/444

Android applications

▶ Android applications are written mostly in Java using Google’s
SDK

▶ Applications are bundled into an Android PacKage (.apk
files) which are archives containing the compiled code, data
and resources for the application, so applications are
completely self-contained

▶ You can install applications either through a market (Google
Play Store, Amazon Appstore, F-Droid, etc) or manually
(through ADB or a file manager)

▶ Of course, everything we have seen so far is mostly here to
provide a nice and unified environment to application
developers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 378/444

Applications Security

▶ Once installed, applications live in their own sandbox, isolated
from the rest of the system

▶ The system assigns a Linux user to every application, so that
every application has its own user/group

▶ It uses this UID and files permissions to allow the application
to access only its own files

▶ Each process has its own instance of Dalvik, so code is
running isolated from other applications

▶ By default, each application runs in its own process, which
will be started/killed during system life

▶ Android uses the principle of least privilege. Each application
by default has only access to what it requires to work.

▶ However, you can request extra permissions, make several
applications run in the same process, or with the same UID,
etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 379/444

Applications Components

▶ Components are the basic blocks of each application
▶ You can see them as entry points for the system in the

application
▶ There is four types of components:

▶ Activities
▶ Broadcast Receivers
▶ Content Providers
▶ Services

▶ Every application can start any component, even located in
other applications. This allows to share components easily,
and have very little duplication. However, for security reasons,
you start it through an Intent and not directly

▶ When an application requests a component, the system starts
the process for this application, instantiates the needed class
and runs that component. We can see that there is no single
point of entry in an application like main()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 380/444

Application Manifest

▶ To declare the components present in your application, you
have to write a XML file, AndroidManifest.xml

▶ This file is used to:
▶ Declare available components
▶ Declare which permissions these components need
▶ Revision of the API needed
▶ Declare hardware features needed
▶ Libraries required by the components

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 381/444

Manifest HelloWorld

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.example.android">

<application>
<activity android:name=".ExampleActivity"

android:label="@string/example_label">
<intent-filter>

<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>
<uses-library android:name="com.example.android.pl" />

</application>
</manifest>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 382/444

NDK

▶ Google also provides a NDK to allow developers to write
native code

▶ While the code is not run by Dalvik, the security guarantees
are still there

▶ Allows to write faster code or to port existing C code to
Android more easily

▶ Since Gingerbread, you can even code a whole application
without writing a single line of Java

▶ It is still packaged in an apk, with a manifest, etc.
▶ However, there are some drawbacks, the main one being that

you can’t access the resources mechanism available from Java

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 383/444

Android Application Development

Activities

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 384/444

Activities

▶ Activities are a single screen of the user interface of an
application

▶ They are assembled to provide a consistent interface. If we
take the example of an email application, we will have:
▶ An activity listing the received mails
▶ An activity to compose a new mail
▶ An activity to read a mail

▶ Other applications might need one of these activities. To
continue with this example, the Camera application might
want to start the composing activity to share the just-shot
picture

▶ It is up to the application developer to advertise available
activities to the system

▶ When an activity starts a new activity, the latter replaces the
former on the screen and is pushed on the back stack which
holds the last used activities, so when the user is done with
the newer activity, it can easily go back to the previous one

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 385/444

Back Stack

Credits: http://developer.android.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 386/444

http://developer.android.com

Back Stack

Credits: http://developer.android.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 387/444

http://developer.android.com

Activity Lifecycle 1/3

▶ As there is no single entry point and as the system manages
the activities, activities have to define callbacks that the
system can call at some point in time

▶ Activities can be in one of the three states on Android
Running The activity is on the foreground and has focus
Paused The activity is still visible on the screen but no

longer has focus. It can be destroyed by the
system under very heavy memory pressure

Stopped The activity is no longer visible on the screen. It
can be killed at any time by the system

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 388/444

Activity Lifecycle 2/3

▶ There are callbacks for every change from one of these states
to another

▶ The most important ones are onCreate and onPause

▶ All components of an application run in the same thread. If
you do long operations in the callbacks, you will block the
entire application (UI included). You should always use
threads for every long-running task.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 389/444

Activity Lifecycle 3/3

Credits: http://developer.android.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 390/444

http://developer.android.com

Saving Activity State 1/2

▶ As applications tend to be killed and restarted quite often, we
need a way to store our internal state when killed and reload
it when restarted

▶ Once again, this is done through callbacks
▶ Before killing the application, the system calls the

onSaveInstanceState callback and when restarting it, it calls
onRestoreInstanceState

▶ In both cases, it provides a Bundle as argument to allow the
activity to store what’s needed and reload it later, with little
overhead

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 391/444

Saving Activity State 2/2

▶ This make the creation/suppression of activities flawless for
the user, while allowing to save as much memory as we need

▶ These callbacks are not always called though. If the activity is
killed because the user left it in a permanent way (through the
back button), it won’t be called

▶ By default, these activities are also called when rotating the
device, because the activity will be killed and restarted by the
system to load new resources

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 392/444

Activity Lifecycle

Credits: http://developer.android.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 393/444

http://developer.android.com

Activity Callbacks

Credits: http://developer.android.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 394/444

http://developer.android.com

Activity HelloWorld

public class ExampleActivity extends Activity {
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.example);
Log.i("ExampleActivity", "Activity created!");

}
protected void onStart() {

super.onStart();
}
protected void onResume() {

super.onResume();
}
protected void onPause() {

super.onPause();
}
protected void onStop() {

super.onStop();
}
protected void onDestroy() {

super.onDestroy();
}

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 395/444

Android Application Development

Services

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 396/444

Services

▶ Services are components running in the background
▶ They are used either to perform long running operations or to

work for remote processes
▶ A service has no user interface, as it is supposed to run when

the user does something else
▶ From another component, you can either work with a service

in a synchronous way, by binding to it, or asynchronous, by
starting it

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 397/444

Service Manifest

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.example.android">

<application>
<service android:name=".ExampleService"/>

</application>
</manifest>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 398/444

Services Types

▶ We can see services as a set including:
▶ Started Services, that are created when other components call

startService. Such a service runs as long as needed, whether
the calling component is still alive or not, and can stop itself or
be stopped. When the service is stopped, it is destroyed by the
system

▶ You can also subclass IntentService to have a started
service. However, while much easier to implement, this service
will not handle multiple requests simultaneously.

▶ Bound Services, that are bound to by other components by
calling bindService. They offer a client/server like interface,
interacting with each other. Multiple components can bind to
it, and a service is destroyed only when no more components
are bound to it

▶ Services can be of both types, given that callbacks for these
two do not overlap completely

▶ Services are started by passing Intents either to the
startService or bindService commands

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 399/444

Services Lifecycle

Credits: http://developer.android.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 400/444

http://developer.android.com

Bound Services

▶ There are three possible ways to implement a bound service:
▶ By extending the Binder class. It works only when the clients

are local and run in the same process though.
▶ By using a Messenger, that will provide the interface for your

service to remote processes. However, it does not perform
multi-threading, all requests are queued up.

▶ By writing your own AIDL file. You will then be able to
implement your own interface and write thread-safe code, as
you are very likely to receive multiple requests at once

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 401/444

Bound Services and Started Lifecycle

Credits: http://developer.android.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 402/444

http://developer.android.com

Android Application Development

Content Providers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 403/444

Content Providers

▶ They provide access to organized data in a manner quite
similar to relational databases

▶ They allow to share data with both internal and external
components and centralize them

▶ Security is also enforced by permissions like usual, but they
also do not allow remote components to issue arbitrary
requests like what we can do with relational databases

▶ Instead, Content Providers rely on URIs to allow for a
restricted set of requests with optional parameters, only
permitting the user to filter by values and by columns

▶ You can use any storage back-end you want, while exposing a
quite neutral and consistent interface to other applications

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 404/444

Content URIs

▶ URIs are often built with the following pattern:
▶ content://<package>.provider/<path> to access particular

tables
▶ content://<package>.provider/<path>/<id> to access

single rows inside the given table
▶ Facilities are provided to deal with these

▶ On the application side:
▶ ContentUri to append and manage numerical IDs in URIs
▶ Uri.Builder and Uri classes to deal with URIs and strings

▶ On the provider side:
▶ UriMatcher associates a pattern to an ID, so that you can

easily match incoming URIs, and use switch over them.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 405/444

Implementing a Content Provider

public class ExampleProvider extends ContentProvider {
private static final UriMatcher sUriMatcher;

static {
sUriMatcher.addURI("com.example.android.provider", "table1", 1);
sUriMatcher.addURI("com.example.android.provider", "table1/#", 2);

}

public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {

switch (sUriMatcher.match(uri)) {
default:

System.out.println("Hello World!");
break;

}
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 406/444

Implementing a Content Provider

public Uri insert(Uri uri, ContentValues values) {
return null;

}

public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs) {

return 0;
}

public int delete(Uri uri, String selection, String[] selectionArgs) {
return 0;

}

public boolean onCreate() {
return true;

}
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 407/444

Android Application Development

Managing the Intents

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 408/444

Intents

▶ Intents are basically a bundle of several pieces of information,
mostly
▶ Component Name

▶ Contains both the full class name of the target component
plus the package name defined in the Manifest

▶ Action
▶ The action to perform or that has been performed

▶ Data
▶ The data to act upon, written as a URI, like

tel://0123456789

▶ Category
▶ Contains additional information about the nature of the

component that will handle the intent, for example the
launcher or a preference panel

▶ The component name is optional. If it is set, the intent will
be explicit. Otherwise, the intent will be implicit

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 409/444

Intent Resolution

▶ When using explicit intents, dispatching is quite easy, as the
target component is explicitly named. However, it is quite rare
that a developer knows the component name of external
applications, so it is mostly used for internal communication.

▶ Implicit intents are a bit more tricky to dispatch. The system
must find the best candidate for a given intent.

▶ To do so, components that want to receive intents have to
declare them in their manifests Intent filters, so that the
system knows what components it can respond to.

▶ Components without intent filters will never receive implicit
intents, only explicit ones

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 410/444

Intent Filters 1/2

▶ They are only about notifying the system about handled
implicit intents

▶ Filters are based on matching by category, action and data.
Filtering by only one of these three (by category for example)
is fine.
▶ A filter can list several actions. If an intent action field

corresponds to one of the actions listed here, the intent will
match

▶ It can also list several categories. However, if none of the
categories of an incoming intent are listed in the filter, then
intent won’t match.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 411/444

Intent Filters 2/2

▶ You can also use intent matching from your application by
using the query* methods from the PackageManager to get a
matching component from an Intent.

▶ For example, the launcher application does that to display
only activities with filters that specify the category
android.intent.category.LAUNCHER and the action
android.intent.action.MAIN

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 412/444

Real Life Manifest Example: Notepad

<manifest package="com.example.android.notepad">
<application android:icon="@drawable/app_notes"

android:label="@string/app_name" >

<activity android:name="NotesList"
android:label="@string/title_notes_list">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
<intent-filter>

<action android:name="android.intent.action.VIEW" />
<action android:name="android.intent.action.EDIT" />
<action android:name="android.intent.action.PICK" />
<category android:name="android.intent.category.DEFAULT" />
<data android:mimeType="vnd.android.cursor.dir/vnd.google.note" />

</intent-filter>
</activity>

</application>
</manifest>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 413/444

Broadcasted intents

▶ Intents can also be broadcast thanks to two functions:
▶ sendBroadcast that broadcasts an intent that will be handled

by all its handlers at the same time, in an undefined order
▶ sendOrderedBroadcast broadcasts an intent that will be

handled by one handler at a time, possibly with propagation of
the result to the next handler, or the possibility for a handler
to cancel the broadcast

▶ Broadcasts are used for system wide notification of important
events: booting has completed, a package has been removed,
etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 414/444

Broadcast Receivers

▶ Broadcast receivers are the fourth type of components that
can be integrated into an application. They are specifically
designed to deal with broadcast intents.

▶ Their overall design is quite easy to understand: there is only
one callback to implement: onReceive

▶ The lifecycle is quite simple too: once the onReceive callback
has returned, the receiver is considered no longer active and
can be destroyed at any moment

▶ Thus you must not use asynchronous calls (Bind to a service
for example) from the onReceive callback, as there is no way
to be sure that the object calling the callback will still be alive
in the future.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 415/444

Android Application Development

Processes and Threads

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 416/444

Process Management in Android

▶ By default in Android, every component of a single
application runs in the same process.

▶ When the system wants to run a new component:
▶ If the application has no running component yet, the system

will start a new process with a single thread of execution in it
▶ Otherwise, the component is started within that process

▶ If you happen to want a component of your application to run
in its own process, you can still do it through the
android:process XML attribute in the manifest.

▶ When the memory constraints are high, the system might
decide to kill a process to get some memory back. This is done
based on the importance of the process to the user. When a
process is killed, all the components running inside are killed.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 417/444

Processes priority

▶ Foreground processes have the topmost priority. They host
either
▶ An activity the user is interacting with
▶ A service bound to such an activity
▶ A service running in the foreground (started with

startForeground)
▶ A service running one of its lifecycle callbacks
▶ A broadcast receiver running its onReceive method

▶ Visible processes host
▶ An activity that is no longer in the foreground but still is

visible on the screen
▶ A service that is bound to a visible activity

▶ Service Processes host a service that has been started by
startService

▶ Background Processes host activities that are no longer visible
to the user

▶ Empty Processes
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 418/444

Threads

▶ As there is only one thread of execution, both the application
components and UI interactions are done in sequential order

▶ So a long computation, I/O, background tasks cannot be run
directly into the main thread without blocking the UI

▶ If your application is blocked for more than 5 seconds, the
system will display an “Application Not Responding” dialog,
which leads to poor user experience

▶ Moreover, UI functions are not thread-safe in Android, so you
can only manipulate the UI from the main thread.

▶ So, you should:
▶ Dispatch every long operation either to a service or a worker

thread
▶ Use messages between the main thread and the worker threads

to interact with the UI.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 419/444

Threads in Android

▶ There are two ways of implementing worker threads in
Android:
▶ Use the standard Java threads, with a class extending

Runnable
▶ This works, of course, but you will need to do messaging

between your worker thread and the main thread, either
through handlers or through the View.post function

▶ Use Android’s AsyncTask
▶ A class that has four callbacks: doInBackground,

onPostExecute, onPreExecute, onProgressUpdate
▶ Useful, because only doInBackground is called from a worker

thread, others are called by the UI thread

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 420/444

Android Application Development

Resources

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 421/444

Applications Resources

▶ Applications contain more than just compiled source code:
images, videos, sound, etc.

▶ In Android, anything related to the visual appearance of the
application is kept separate from the source code: activities
layout, animations, menus, strings, etc.

▶ Resources should be kept in the res/ directory of your
application.

▶ At compilation, the build tool will create a class R, containing
references to all the available resources, and associating an ID
to it

▶ This mechanism allows you to provide several alternatives to
resources, depending on locales, screen size, pixel density, etc.
in the same application, resolved at runtime.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 422/444

Resources Directory

▶ All resources are located in the res/ subdirectory
▶ anim/ contains animation definitions
▶ color/ contains the color definitions
▶ drawable/ contains images, ”9-patch” graphics, or XML-files

defining drawables (shapes, widgets, relying on a image file)
▶ layout/ contains XML defining applications layout
▶ menu/ contains XML files for the menu layouts
▶ raw/ contains files that are left untouched
▶ values/ contains strings, integers, arrays, dimensions, etc
▶ xml/ contains arbitrary XML files

▶ All these files are accessed by applications through their IDs.
If you still want to use a file path, you need to use the
assets/ folders

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 423/444

Resources

Credits: http://developer.android.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 424/444

http://developer.android.com

Alternative Resources

▶ Alternative resources are provided using extended sub-folder
names, that should be named using the pattern
<folder_name>-<qualifier>

▶ There is a number of qualifiers, depending on which case you
want to provide an alternative for. The most used ones are
probably:
▶ locales (en, fr, fr-rCA, ...)
▶ screen orientation (land, port)
▶ screen size (small, large,...)
▶ screen density (mdpi, ldpi, ...)
▶ and much others

▶ You can specify multiple qualifiers by chaining them,
separated by dashes. If you want layouts to be applied only
when on landscape on high density screens, you will save them
into the directory layout-land-hdpi

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 425/444

Resources Selection

Credits: http://developer.android.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 426/444

http://developer.android.com

Android Application Development

Data Storage

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 427/444

Data Storage on Android

▶ An application might need to write to arbitrary files and read
from them, for caching purposes, to make settings persistent,
etc.

▶ But the system can’t just let you read and write to any
random file on the system, this would be a major security flaw

▶ Android provides some mechanisms to address the two
following concerns: allow an application to write to files, while
integrating it into the Android security model

▶ There are four major mechanisms:
▶ Preferences
▶ Internal data
▶ External data
▶ Databases

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 428/444

Shared Preferences

▶ Shared Preferences allows to store and retrieve data in a
persistent way

▶ They are stored using key-value pairs, but can only store basic
types: int, float, string, boolean

▶ They are persistent, so you don’t have to worry about them
disappearing when the activity is killed

▶ You can get an instance of the class managing the preferences
through the function getPreferences

▶ You may also want several set of preferences for your
application and the function getSharedPreferences for that

▶ You can edit them by calling the method edit on this
instance. Don’t forget to call commit when you’re done!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 429/444

Internal Storage

▶ You can also save files directly to the internal storage device
▶ These files are not accessible by default by other applications
▶ Such files are deleted when the user removes the application
▶ You can request a FileOutputStream class to such a new file

by calling the method openFileOutput

▶ You can pass extra flags to this method to either change the
way the file is opened or its permissions

▶ These files will be created at runtime. If you want to have
files at compile time, use resources instead

▶ You can also use internal storage for caching purposes. To do
so, call getCacheDir that will return a File object allowing
you to manage the cache folder the way you want to. Cache
files may be deleted by Android when the system is low on
internal storage.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 430/444

External Storage

▶ External storage is either the SD card or an internal storage
device

▶ Each file stored on it is world-readable, and the user has direct
access to it, since that is the device exported when USB mass
storage is used.

▶ Since this storage may be removable, your application should
check for its presence, and that it behaves correctly

▶ You can either request a sub-folder created only for your
application using the getExternalFilesDir method, with a
tag giving which type of files you want to store in this
directory. This folder will be removed at un-installation.

▶ Or you can request a public storage space, shared by all
applications, and never removed by the system, using
getExternalStoragePublicDirectory

▶ You can also use it for caching, with getExternalCacheDir

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 431/444

SQLite Databases

▶ Databases are often abstracted by Content Providers, that will
abstract requests, but Android adds another layer of
abstraction

▶ Databases are managed through subclasses of
SQLiteOpenHelper that will abstract the structure of the
database

▶ It will hold the requests needed to build the tables, views,
triggers, etc. from scratch, as well as requests to migrate to a
newer version of the same database if its structure has to
evolve.

▶ You can then get an instance of SQLiteDatabase that allows
to query the database

▶ Databases created that way will be only readable from your
application, and will never be automatically removed by the
system

▶ You can also manipulate the database using the sqlite3
command in the shell

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 432/444

Android Application Development

Android Packages (apk)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 433/444

Content of an APK

▶ META-INF a directory containing all the Java metadata
▶ MANIFEST.MF the Java Manifest file, containing various

metadata about the classes present in the archive
▶ CERT.RSA Certificate of the application
▶ CERT.SF List of resources present in the package and

associated SHA-1 hash
▶ AndroidManifest.xml

▶ res contains all the resources, compiled to binary xml for the
relevant resources

▶ classes.dex contains the compiled Java classes, to the
Dalvik EXecutable format, which is a uncompressed format,
containing Dalvik instructions

▶ resources.arsc is the resources table. It keeps track of the
package resources, associated IDs and packages

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 434/444

APK Building

Credits: http://developer.android.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 435/444

http://developer.android.com

APK Building

Credits: http://developer.android.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 436/444

http://developer.android.com

Practical lab - Write an Application with the SDK

▶ Write an Android application
▶ Integrate an application in the

Android build system

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 437/444

Advices and Resources

Advices and
Resources

© Copyright 2004-2019, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 438/444

Android Internals

Embedded Android: Porting, Extending, and
Customizing, April 2013
▶ By Karim Yaghmour, O’Reilly
▶ From what we know from the preview

version, good reference book and guide
on all hidden and undocumented Android
internals

▶ Our rating: 3 stars

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 439/444

Android Development

Learning Android, March 2011
▶ By Marko Gargenta, O’Reilly
▶ A good reference book and guide on

Android application development
▶ Our rating: 2 stars

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 440/444

Websites

▶ Android API reference:
http://developer.android.com/reference

▶ Android Documentation:
http://developer.android.com/guide/

▶ A good overview on how the various parts of the system are
put together to maintain a highly secure system
http://source.android.com/tech/security/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 441/444

http://developer.android.com/reference
http://developer.android.com/guide/
http://source.android.com/tech/security/

Conferences

Useful conferences featuring Android topics:
▶ Embedded Linux Conference:

http://embeddedlinuxconference.com/
Organized by the Linux Foundation in the USA (Spring) and
in Europe (Fall). Mostly about kernel and user space Linux
development in general, but always some talks about Android.
Presentation slides and videos freely available

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 442/444

http://embeddedlinuxconference.com/

Last slides

Last slides

© Copyright 2004-2019, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 443/444

Last slide

Thank you!
And may the Source be with you

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 444/444

	Generic course information
	Introduction to Android
	Features
	History
	Architecture
	Hardware Requirements for Android

	Android Source Code and Compilation
	How to get the source code
	Source code organization
	Compilation
	Contribute

	Linux kernel introduction
	Linux features
	Linux versioning scheme and development process
	Building the kernel
	Kernel configuration
	Compiling and installing the kernel
	Booting the kernel

	Changes introduced in the Android Kernel
	Wakelocks
	Binder
	klogger
	Anonymous Shared Memory (ashmem)
	Alarm Timers
	Low Memory Killer
	The ION Memory Allocator
	Network Security
	Various Drivers and Fixes
	Linux Mainline Patches Merge

	Android Bootloaders
	Boot Sequence
	Fastboot

	Android Build System: Basics
	Basics
	envsetup.sh
	Configuration of the Build System
	Results

	Developing and Debugging with ADB
	Introduction
	Use of ADB
	Examples

	Android Filesystem
	Principle and solutions
	Contents
	Device Files
	Minimal filesystem

	Android Build System: Advanced
	Add a New Module
	Add a New Product

	Android Native Layer
	Definition and Components
	Bionic
	Toolbox
	Init
	Various daemons
	SurfaceFlinger
	Stagefright
	Dalvik and Zygote
	Hardware Abstraction Layer
	JNI

	Android Framework and Applications
	Service Manager and Various Services
	Inter-Process Communication, Binder and AIDLs
	Various Java Services
	Extend the framework

	Android Application Development
	Basics
	Activities
	Services
	Content Providers
	Managing the Intents
	Processes and Threads
	Resources
	Data Storage
	Android Packages (apk)

	Advices and Resources
	Last slides

