
Embedded Linux kernel and driver development training
On-line seminar, 7 sessions of 4 hours

Latest update: March 18, 2024

Title Embedded Linux kernel and driver development training

Training objectives
• Be able to configure, build and install the Linux kernel on an embed-
ded system.

• Be able to understand the overall architecture of the Linux kernel, and
how user-space applications interact with the Linux kernel.

• Be able to develop simple but complete Linux kernel device drivers,
thanks to the development from scratch of two drivers for two different
hardware devices, that illustrate all the major concepts of the course.

• Be able to navigate through the device drivers mechanisms of the
Linux kernel: Device Tree, device model, bus infrastructures.

• Be able to develop device drivers that communicate with hardware
devices.

• Be able to develop drivers that expose functionality of hardware de-
vices to Linux user-space applications: character devices, kernel sub-
systems.

• Be able to use the major kernel mechanisms needed for device
driver development: memory management, locking, interrupt han-
dling, sleeping, DMA.

• Be able to debug Linux kernel issues, using a variety of debugging
techniques and mechanisms.

Duration Seven half days - 28 hours (4 hours per half day)

Pedagogics • Lectures delivered by the trainer, over video-conference. Participants
can ask questions at any time.

• Practical demonstrations done by the trainer, based on practical labs,
over video-conference. Participants can ask questions at any time.
Optionally, participants who have access to the hardware accessories
can reproduce the practical labs by themselves.

• Instant messaging for questions between sessions (replies under 24h,
outside of week-ends and bank holidays).

• Electronic copies of presentations, lab instructions and data files.
They are freely available at https://bootlin.com/doc/training/linux-
kernel.

https://bootlin.com/doc/training/linux-kernel
https://bootlin.com/doc/training/linux-kernel


Trainer One of the engineers listed on:
https://bootlin.com/training/trainers/

Language Oral lectures: English, French.
Materials: English.

Audience People developing devices using the Linux kernel
People supporting embedded Linux system developers.

Prerequisites
• Solid experience with the C programming language: participants
must be familiar with the usage of complex data types and structures,
pointers, function pointers, and the C pre-processor.

• Knowledge and practice of UNIX or GNU/Linux commands:
participants must be familiar with the Linux command line. Par-
ticipants lacking experience on this topic should get trained by
themselves, for example with our freely available on-line slides at
bootlin.com/blog/command-line/.

• Minimal experience in embedded Linux development: participants
should have a minimal understanding of the architecture of embedded
Linux systems: role of the Linux kernel vs. user-space, development
of Linux user-space applications in C. Following Bootlin’s Embedded
Linux course at bootlin.com/training/embedded-linux/ allows to fulfill
this pre-requisite.

• Minimal English language level: B1, according to the Common
European Framework of References for Languages, for our ses-
sions in English. See bootlin.com/pub/training/cefr-grid.pdf for self-
evaluation.

Required equipment
• Computer with the operating system of your choice, with the Google
Chrome or Chromium browser for videoconferencing.

• Webcam and microphone (preferably from an audio headset)
• High speed access to the Internet

Certificate Only the participants who have attended all training sessions, and who have
scored over 50% of correct answers at the final evaluation will receive a
training certificate from Bootlin.

Disabilities Participants with disabilities who have special needs are invited to contact
us at training@bootlin.com to discuss adaptations to the training course.

https://bootlin.com/training/trainers/
https://bootlin.com/blog/command-line/
https://bootlin.com/training/embedded-linux/
https://bootlin.com/pub/training/cefr-grid.pdf


Hardware

The hardware platform used for the practical de-
mos of this training session is the BeagleBone
Black board, which features:

• An ARM AM335x processor from Texas
Instruments (Cortex-A8 based), 3D accel-
eration, etc.

• 512 MB of RAM
• 2 GB of on-board eMMC storage
(4 GB in Rev C)

• USB host and device
• HDMI output
• 2 x 46 pins headers, to access UARTs, SPI
buses, I2C buses and more.

Demos

The practical demos of this training session use the following hardware peripherals to illustrate the devel-
opment of Linux device drivers:

• A Wii Nunchuk, which is connected over the I2C bus to the BeagleBone Black board. Its driver will
use the Linux input subsystem.

• An additional UART, which is memory-mapped, and will use the Linux misc subsystem.
While our explanations will be focused on specifically the Linux subsystems needed to implement these
drivers, they will always be generic enough to convey the general design philosophy of the Linux kernel.
The information learnt will therefore apply beyond just I2C, input or memory-mapped devices.

Half day 1

Lecture - Introduction to the Linux kernel Lab - Downloading the Linux kernel source
code

• Roles of the Linux kernel
• Kernel user interface (/proc and /sys)
• Overall architecture
• Versions of the Linux kernel
• Kernel source tree organization

• Download the Linux kernel code from Git



Lecture - Linux kernel source code Lab - Kernel sources

• Specifics of Linux kernel development
• Coding standards
• Stability of interfaces
• Licensing aspects
• User-space drivers

• Making searches in the Linux kernel
sources: looking for C definitions, for def-
initions of kernel configuration parameters,
and for other kinds of information.

• Using the UNIX command line and then
kernel source code browsers.

Lecture - Configuring, compiling and booting
the Linux kernel

Demo - Kernel configuration, cross-compiling
and booting on NFS

• Kernel configuration.
• Native and cross compilation. Generated
files.

• Booting the kernel. Kernel booting param-
eters.

• Mounting a root filesystem on NFS.

Using the BeagleBone Black board
• Configuring, cross-compiling and booting a
Linux kernel with NFS boot support.

Half day 2

Lecture - Linux kernel modules Demo - Writing modules

• Linux device drivers
• A simple module
• Programming constraints
• Loading, unloading modules
• Module dependencies
• Adding sources to the kernel tree

Using the BeagleBone Black board
• Write a kernel module with several capabil-
ities.

• Access kernel internals from your module.
• Set up the environment to compile it



Lecture - Describing hardware devices Demo - Describing hardware devices

• Discoverable hardware: USB, PCI
• Non-discoverable hardware
• Extensive details on Device Tree: overall
syntax, properties, design principles, exam-
ples

Using the BeagleBone Black board
• Create your own Device Tree file
• Configure LEDs connected to GPIOs
• Describe an I2C-connected device in the
Device Tree

Half day 3

Lecture - Pin muxing Demo - Pin muxing

• Understand the pinctrl framework of the
kernel

• Understand how to configure the muxing of
pins

Using the BeagleBone Black board
• Configure the pinmuxing for the I2C bus
used to communicate with the Nunchuk

• Validate that the I2C communication works
using user space tools

Lecture - Linux device model

• Understand how the kernel is designed to support device drivers
• The device model
• Binding devices and drivers
• Platform devices, Device Tree
• Interface in user space: /sys



Lecture - Introduction to the I2C API Demo - Communicate with the Nunchuk over
I2C

• The I2C subsystem of the kernel
• Details about the API provided to kernel
drivers to interact with I2C devices

Using the BeagleBone Black board
• Explore the content of /dev and /sys and
the devices available on the embedded hard-
ware platform.

• Implement a driver that registers as an I2C
driver.

• Communicate with the Nunchuk and extract
data from it.

Half day 4

Lecture - Kernel frameworks

• Block vs. character devices
• Interaction of user space applications with the kernel
• Details on character devices, file_operations, ioctl(), etc.
• Exchanging data to/from user space
• The principle of kernel frameworks

Lecture - The input subsystem Demo - Expose the Nunchuk functionality to
user space

• Principle of the kernel input subsystem
• API offered to kernel drivers to expose in-
put devices capabilities to user space appli-
cations

• User space API offered by the input subsys-
tem

Using the BeagleBone Black board
• Extend the Nunchuk driver to expose the
Nunchuk features to user space applica-
tions, as a input device.

• Test the operation of the Nunchuk using
evtest



Half day 5

Lecture - Memory management Lecture - I/O memory

• Linux: memorymanagement - Physical and
virtual (kernel and user) address spaces.

• Linux memory management implementa-
tion.

• Allocating with kmalloc().
• Allocating by pages.
• Allocating with vmalloc().

• I/O memory range registration.
• I/O memory access.
• Memory ordering and barriers

Demo - Minimal platform driver and access to I/O memory

Using the BeagleBone Black board
• Implement a minimal platform driver
• Modify the Device Tree to instantiate the new serial port device.
• Reserve the I/O memory addresses used by the serial port.
• Read device registers and write data to them, to send characters on the serial port.

Lecture - The misc kernel subsystem Demo - Output-only serial port driver

• What the misc kernel subsystem is useful
for

• API of the misc kernel subsystem, both the
kernel side and user space side

Using the BeagleBone Black board
• Extend the driver started in the previous lab
by registering it into the misc subsystem

• Implement serial port output functionality
through the misc subsystem

• Test serial output from user space



Half day 6

Lecture - Processes, scheduling, sleeping and
interrupts

Demo - Sleeping and handling interrupts in a
device driver

• Process management in the Linux kernel.
• The Linux kernel scheduler and how pro-
cesses sleep.

• Interrupt handling in device drivers: inter-
rupt handler registration and programming,
scheduling deferred work.

Using the BeagleBone Black board
• Adding read capability to the character
driver developed earlier.

• Register an interrupt handler.
• Waiting for data to be available in the
read() file operation.

• Waking up the code when data is available
from the device.

Lecture - Locking Demo - Locking

• Issues with concurrent access to shared re-
sources

• Locking primitives: mutexes, semaphores,
spinlocks.

• Atomic operations.
• Typical locking issues.
• Using the lock validator to identify the
sources of locking problems.

Using the BeagleBone Black board
• Add locking to the current driver



Half day 7

Lecture - DMA: Direct Memory Access Demo - DMA: Direct Memory Access

• Peripheral DMA vs. DMA controllers
• DMA constraints: caching, addressing
• Kernel APIs for DMA: dma-mapping,
dmaengine, dma-buf

• Setup streaming mappings with the dma
API

• Configure a DMA controller with the
dmaengine API

• Configure the hardware to trigger DMA
transfers

• Wait for DMA completion

Lecture - Driver debugging techniques Demo - Investigating kernel faults

• Debugging with printing functions
• Using Debugfs
• Analyzing a kernel oops
• Using kgdb, a kernel debugger
• Using the Magic SysRq commands

Using the BeagleBone Black board
• Studying a broken driver.
• Analyzing a kernel fault message and locat-
ing the problem in the source code.

Lecture -ARMboard support and SoC support Lecture - Power management

• Understand the organization of the ARM
support code

• Understand how the kernel can be ported to
a new hardware board

• Overview of the power management fea-
tures of the kernel

• Topics covered: clocks, suspend and re-
sume, dynamic frequency scaling, saving
power during idle, runtime power manage-
ment, regulators, etc.



Lecture - The Linux kernel development process

• Organization of the kernel community
• The release schedule and process: release candidates, stable releases, long-term support, etc.
• Legal aspects, licensing.
• How to submit patches to contribute code to the community.
• Kernel resources: books, websites, conferences

Lecture - If time left Questions and Answers

• mmap • Questions and answers with the audience
about the course topics

• Extra presentations if time is left, according
what most participants are interested in.

Possible extra time
Extra time (up to 4 hours) may be proposed if the agenda didn’t fit in 7 half days, according to the time spent
answering questions from participants.


