Anatomy of
cross-compilation toolchains

Thomas Petazzoni
Bootlin | ——— i
thomas.petazzoni@boot/in. com Artwork and Photography by Jason Freeny

» CTO and Embedded Linux engineer at Bootlin
» Embedded Linux specialists.
» Development, consulting and training.
> http://bootlin.com
» Contributions
» Kernel support for the Marvell Armada ARM SoCs
from Marvell
» Major contributor to Buildroot, an open-source, simple
and fast embedded Linux build system

» Living in Toulouse, south west of France Drawing from Frank
Tizzoni, at Kernel Recipes
2016

http://bootlin.com

» | am not a toolchain developer. Not pretending to know everything about
toolchains.
» Experience gained from building simple toolchains in the context of Buildroot

» Purpose of the talk is to give an introduction, not in-depth information.
» Focused on simple gcc-based toolchains, and for a number of examples, on ARM
specific details.
» Will not cover advanced use cases, such as LTO, GRAPHITE optimizations, etc.
» Will not cover LLVM

> A set of tools that allows to build source code into binary code for a target
platform different than the one where the build takes place

» Different CPU architecture
» Different ABI

» Different operating system
» Different C library

» Three machines involved in the build process

» build machine, where the build takes place
» host machine, where the execution takes place
» target machine, for which the programs generate code

» Native toolchain: build == host == target

» Cross-compilation toolchain: build == host != target

» Corresponds to the -~-build, —~~host and —-target autoconf configure script
arguments

» By default, automatically guessed by autoconf to be for the current machine

» autoconf defines the concept of system definitions, represented as tuples

> A system definition describes a system: CPU architecture, operating system,
vendor, ABI, C library
» Different forms:
> <arch>-<vendor>-<os>-<libc/abi>, full form
» <arch>-<os>-<libc/abi>
» Components:
» <arch>, the CPU architecture: arm, mips, powerpc, i386, i686, etc.
» <vendor>, (mostly) free-form string, ignored by autoconf
P <os>, the operating system. Either none or 1inux for the purpose of this talk.
» <libc/abi>, combination of details on the C library and the ABI in use

» arm-foo-none-eabi, bare-metal toolchain targeting the ARM architecture, from
vendor foo

» arm-unknown-linux-gnueabihf, Linux toolchain targeting the ARM
architecture, using the EABIhf ABI and the glibc C library, from an unknown
vendor

» armeb-linux-uclibcgnueabi, Linux toolchain targeting the ARM big-endian
architecture, using the EABI ABI and the uClibc C library

» mips-img-linux-gnu, Linux toolchain targeting the MIPS architecture, using
the glibc C library, provided by Imagination Technologies.

%

» Two main values for <os>
» none for bare-metal toolchains

» Used for development without an operating system

C library used is generally newlib

Provides C library services that do not require an operating system

Allows to provide basic system calls for specific hardware targets

Can be used to build bootloaders or the Linux kernel, cannot build Linux userspace
code

» 1linux for Linux toolchains

vvyvyy

v

Used for development with a Linux operating system

» Choice of Linux-specific C libraries: glibc, uclibc, musl

» Supports Linux system calls

» Can be used to build Linux userspace code, but also bare-metal code such as
bootloaders or the kernel itself

» There are four core components in a Linux cross-compilation toolchain
1. binutils
2. gcc
3. Linux kernel headers
4. C library

» In addition to these, a few dependencies are needed to build gcc itself.

» “collection of binary tools"
» Main tools
» Id, the linker. Links multiple object files into a shared library, an executable, or
another object file.
» as, the assembler. Takes architecture-specific assembler code in text form, and
produces a corresponding object file with binary code.
» Debugging/analysis tools and other tools
P addr2line, ar, c++filt, gold, gprof, nm, objcopy, objdump, ranlib, readelf, size,
strings, strip
» Needs to be configured for each CPU architecture: your native x86 binutils cannot
produce ARM code.

» Pretty straightforward to cross-compile, no special dependencies are needed.
./configure --target=arm-buildroot-linux-gnueabihf --with-
sysroot=PATH

GNU Compiler Collection

Back-ends for many CPU architectures.
Provides:

» The compiler itself, ccl for C, cciplus for C++. Only generates assembly code in
text format.

» The compiler driver, gcc, g++, which drives the compiler itself, but also the binutils
assembler and linker.

> Target libraries: 1ibgcc (gee runtime), 1ibstdc++ (the C++ library),
libgfortran (the Fortran runtime)

» Header files for the standard C+—+ library.

>
» Front-ends for many source languages: C, C++, Fortran, Go, etc.
>
>

» Building gcc is a bit more involved than building binutils: two steps are needed,
see later.

» In order to build a C library, the Linux kernel headers are needed: definitions of
system call numbers, various structure types and definitions.
» In the kernel, headers are split between:
» User-space visible headers, stored in uapi directories: include/uapi/,
arch/<ARCH>/include/uapi/asm
» Internal kernel headers.
» Installation takes place using
make ARCH=.. INSTALL_HDR_PATH=... headers_install
» The installation includes a sanitation pass, to remove kernel-specific constructs from

the headers.
> As of Linux 4.8, installs 756 header files.

» Which version of the kernel headers should be used in a toolchain?

v

The kernel to userspace ABI is backward compatible.

» Therefore, the version of the kernel used for the kernel headers must be the same
version or older than the kernel version running on the target system.

» Otherwise the C library might use system calls that are not provided by the kernel.

> Examples:

» Toolchain using 3.10 kernel headers, running 4.4 kernel on the target — OK
» Toolchain using 4.8 kernel headers, running 4.4 kernel on the target — NOK

Linux 3.13.0 headers

$ cat arm-none-linux-gnueabi/libc/usr/include/linux/version.h
define LINUX_VERSION_CODE 199936

#define KERNEL_VERSION(a,b,c) (((a) << 16) + ((b) << 8) + (c))

» Provides the implementation of the POSIX standard functions, plus several other
standards and extensions

P> Based on the Linux system calls

» Several implementations available:

>
>
>
>
>

glibc

uClibc-ng (formerly uClibc)

musl|

bionic, for Android systems

A few other more special-purpose: newlib (for bare-metal), dietlibc, klibc

» After compilation and installation, provides:

>
>

>

The dynamic linker, 1d.so

The C library itself 1ibc.so, and its companion libraries: 1ibm, librt,
libpthread, 1ibutil, 1libnsl, libresolv, libcrypt

The C library headers: stdio.h, string.h, etc.

VVVvy VYV VyVVyVYVYY

GNU C Library

De-facto standard of Linux C libraries

Used in virtually all common desktop/server distributions
Full-featured

Supports for numerous architectures or operating systems
No support for noMMU platforms

No support for static linking

ABI backward compatibility

Almost no configurability

Used to be “too big” for embedded, but no longer necessarily the case.
LGPLv2.1 or later
https://www.gnu.org/software/libc/

https://www.gnu.org/software/libc/

Started in 2000

High-level of configurability

Supports many architectures, include some not supported by glibc
Supports only Linux as operating system

No ABI backward compatibility

Supports numerous no-MMU architectures: ARM noMMU, Blackfin, etc.
No longer related to uClinux

Support for static linking

Original uClibc project dead (last release in May 2012), but the uClibc-ng fork is
very active and is the de-facto replacement.

LGPLv2.1
http://uclibc-ng.org/

vVvvyVvYvVvyVvYVyYVYY

vy

http://uclibc-ng.org/

vvyyvyy

v

v

>

>

Started in 2011

MIT licensed

Very active development

Support for ARM, ARM64, i386, Microblaze, MIPS(64), OpenRisc, PowerPC(64),
SuperH, x86-4

Recently, noMMU support was added for SuperH2, for the J-core Open
Processor

No configurability

Small, even smaller than uClibc, especially for static linking scenarios

Strict conformance to standards (stricter than glibc, uClibc), causes a few build
issues with a number of packages

Nice comparison of the three main C libraries:
http://www.etalabs.net/compare_libcs.html
http://www.musl-1libc.org/

http://www.etalabs.net/compare_libcs.html
http://www.musl-libc.org/

glibc uclibc musl
1d, dynamic linker | 121 KB | 25 KB N/A
libc 878 KB | 286 KB | 437 KB
libcrypt 30 KB 17 KB N/A
libdl 9.5 KB 9 KB N/A
libm 414 KB | 37 KB N/A
libnsl 54KB | 47KB | N/A
libnss_dns 14 KB N/A N/A

libnss_files 30 KB N/A N/A
libpthread 105 KB | 76 KB N/A

libresolv 54KB | 47KB | N/A

librt 22KB | 13 KB N/A

libutil 9.5K 4.7 KB N/A
TOTAL 1741 KB | 477 KB | 437 KB

ARM Cortex-A9 toolchain built with the Thumb-2 instruction set, using Buildroot. gcc 4.9, binutils 2.26, musl 1.1.15, glibc 2.23, uclibc-ng 1.0.17

» Several math libraries are needed to build gcc
» They are compiled for the host machine, i.e they are not needed on the target

» mpfr, multiple-precision floating-point computations. Used since gcc 4.3 to evaluate
and replace at compile-time calls to built-in math functions having constant
arguments with their mathematically equivalent results

» gmp, dependency of mpfr

» mpc, for computation of complex numbers. Used since gcc 4.5 to evaluate calls to
complex built-in math functions having constant arguments and replace them at
compile time with their mathematically equivalent result

» The build process for a regular Linux cross-compilation toolchain is in fact fairly

easy:
1.

ook wN

Build binutils

Build the dependencies of gcc: mpfr, gmp, mpc

Install the Linux kernel headers

Build a first stage gcc: no support for a C library, support only for static linking
Build the C library using the first stage gcc

Build the final gcc, with C library and support for dynamic linking

host-gawk
host-binutils

toolchain — toolchain-buildroot ~ — host-gce-final host-gec-initial

host-mpc —— hostmpfr — hostgmp — host-m4

The sysroot is the the logical root directory for headers and libraries
Where gcc looks for headers, and /d looks for libraries

Both gcc and binutils are built with —-with-sysroot=<SYSROOT>

The kernel headers and the C library are installed in <SYSROOT>

If the toolchain has been moved to a different location, gcc will still find its
sysroot if it's in a subdir of ——prefix
» --prefix=/home/thomas/buildroot/arm-uclibc/host/usr
» --with-sysroot=/home/thomas/buildroot/arm-uclibc/host/usr/arm-
buildroot-linux-uclibcgnueabihf/sysroot

vvyyvyVvyy

» Can be overridden at runtime using gcc's ——sysroot option.

P> The current sysroot can be printed using the -print-sysroot option.

> Most toolchains provide a single sysroot with the C library and gcc runtime
libraries

» These libraries, built for the target, are optimized for a specific architecture
variant and ABI

» Need to have one toolchain for each architecture variant or ABI

» Multilib toolchains contain multiple sysroot, each having a version of the target
libraries for different architecture/ABI variants.

» Example of the Sourcery CodeBench ARM toolchain:

$ arm-none-linux-gnueabi-gcc -print-multi-1ib
armv4t ; Gmarch=armv4t
thumb?2 ; @mthumb@march=armv7-a

» Three sysroots: ARMv5, ARMv4 and ARMv7 Thumb-2
e [e e ——————— T

» The compiler automatically selects the right sysroot depending on the gcc flags:

arm-none-linux-gnueabi-gcc -march=armvSte -print-sysroot

../bin/../arm-none-linux-gnueabi/libc

arm-none-linux-gnueabi-gcc -march=armv4t -print-sysroot

../bin/../arm-none-linux-gnueabi/libc/armvdt

arm-none-linux-gnueabi-gcc -march=armv7-a -mthumb -print-sysroot

.../bin/../arm-none-linux-gnueabi/libc/thumb2

@

3

3

» Each sysroot has a different library variant:

readelf -A arm-none-linux-gnueabi/libc/1ib/1d-2.18.s0
Tag_CPU_name: "STE"

Tag_CPU_arch: v5TE

readelf -A arm-none-linux-gnueabi/libc/armv4t/1ib/1d-2.18.s0
Tag_CPU_name: "4T"

Tag_CPU_arch: v4T

readelf -A arm-none-linux-gnueabi/libc/thumb2/1ib/1d-2.18.s0
Tag_CPU_name: "7-A"

Tag_CPU_arch: v7

Tag_THUMB_ISA_use: Thumb-2

Cross-compilation toolchain generated by Buildroot
» arm-buildroot-linux-uclibcgnueabihf/

bin/

include/

1lib/

libexec/

vvyyVvyy

share/

%

» arm-buildroot-linux-uclibcgnueabihf/
» bin/
> Limited set of binutils programs, without their cross-compilation prefix. Hard links to
their counterparts with the prefix. This is where gcc finds them.
» include/c++/4.9.4/
» Headers for the C++ standard library, installed by gcc
> Interestingly, they are not part of the sysroot per-se.
» 1ib/
» The gcc runtime libraries, built for the target
P> libatomic, provides a software implementation of atomic built-ins, when needed
> libgcc, the main gcc runtime (optimized functions, 64-bit division, floating point
emulation)
P> libitm, transactional memory library
P> libstdc++, standard C++ library
P> libsupc++, subset of 1ibstdc++ with only the language support functions
» sysroot/
» 1ib/, usr/1lib/: C library and gcc runtime libraries (shared and static)
» usr/include/, Linux kernel and C library headers
» bin/

» arm-buildroot-linux-uclibcgnueabihf/
» bin/
» arm-buildroot-linux-uclibcgnueabihf- prefixed tools
» From binutils: addr2line, ar, as, elfedit, gcov, gprof, Id, nm, objcopy, objdump,
ranlib, readelf, size, strings, strip
» From gcc: c++ (same as g++), cc (same as gcc), cpp, g++, gee, gee-ar, gee-nm,
gce-ranlib
» The gcc-{ar,nm,ranlib} are wrappers for the corresponding binutils program, to
support Link Time Optimization (LTO)

include/
1ib/

libexec/

vvyyypy

share/

arm-buildroot-linux-uclibcgnueabihf/
» bin/

» include/

» Headers of the host libraries (gmp, mpfr, mpc)

» 1ib/
» libexec/
» share/

v

» arm-buildroot-linux-uclibcgnueabihf/
» bin/

» include/
» lib/
» gcc/arm-buildroot-linux-uclibcgnueabihf/4.9.4/
> crtbegin#.o, crtend#*.o, object files handling constructors/destructors, linked into
executables
» include/, headers provided by the compiler (stdarg.h, stdint.h, stdatomic.h,
etc.)
» include-fixed/, system headers that gcc fixed up using fixincludes
P> install-tools/, also related to the fixincludes process
» libgcc.a, libgce_eh.a, libgcov.a, static variants of the gcc runtime libraries
» ldscripts/, linker scripts provided by gcc to link programs and libraries
» Host version of gmp, mpfr, mpc, needed for gcc

» libexec/
» share/

arm-buildroot-linux-uclibcgnueabihf/
bin/

include/

lib/
libexec/

» gcc/arm-buildroot-linux-uclibcgnueabihf/4.9.4/

P> cci, the actual C compiler

cclplus, the actual C4++ compiler
collect2, program from gcc collecting initialization functions, wrapping the linker
install-tools/, misc gcc related tools, not needed for the compilation process
liblto_plugin.so.0.0.0, lto-wrapper, 1tol, related to LTO support (outside of
the scope of this talk)

» share/

vvyyvyyvyy

vVvyvy

arm-buildroot-linux-uclibcgnueabihf/
bin/

include/

lib/

libexec/

vyvyvVvyVyvYyyvyy

share/

» documentation (man pages and info pages)
P translation files for gcc and binutils

» gcc provides several configure-time options to tune for a specific architecture/CPU
variant: --with-arch, --with-cpu, --with-abi, --with-fpu
» These define the default architecture/CPU variant for which gcc will generate
code.
» They can be overridden at runtime using the -march, -mcpu, -mabi, -mfpu
options.
» However, be careful: parts of the toolchain are built for the target!
» The gcc runtime libraries
» The C library, dynamic linker, and startup code
» They are built together with the rest of the toolchain, so it's important to know
with what optimization level they were built!
» Passing -march=armv5te is not sufficient to make your binary work on ARMv5 if
your toolchain originally targets ARMv7.
P> Read the gcc documentation, section Machine-dependent options to get the
complete list of possible values.

» ABI = Application Binary Interface
» From the point of a toolchain, the ABI defines:
» How function calls are made (so-called calling convention)

> How arguments are passed: in registers (which ones?), on the stack, how 64-bits
arguments are handled on 32 bits architectures
» How the return value is passed

» Size of basic data types
» Alignment of members in structures
» When there is an operating system, how system calls are made

» Object files from different ABls cannot be linked together (especially important if
you have pre-built libraries or executables!)

» For a given CPU architecture, there can potentially be an infinite number of ABIs:
ABIs are just specifications on how to use the CPU architecture

» Need to understand the ABIs for each architecture.

> OABI: obsolete ABI. Forced the use of hard-float instructions, which required
emulation of floating-point operations in the kernel. No longer supported
anywhere.
» EABI, standardized by ARM. Allows mixing hard-float code with soft-float code.
Floating point arguments passed in integer registers.
» Hard-float code: uses floating point instructions directly.
» Soft-float code: emulates floating point instructions using a userspace library
provided by gcc
> EABIhIf, also standardized by ARM. Requires a floating point unit: only
hard-float code. Floating point arguments passed in floating point registers.
» gcc options
» EABI soft-float: -mabi=aapcs-linux -mfloat-abi=soft

» EABI hard-float: -mabi=aapcs-linux -mfloat-abi=softfp
» EABIhf: -mabi=aapcs-linux -mfloat-abi=hard

» Toolchain: just the compiler, binutils and C library

» SDK: a toolchain, plus a number (potentially large) of libraries built for the target
architecture, and additional native tools helpful when building software.
» Build systems such as OpenEmbedded or Yocto can typically:
» Use an existing toolchain as input, or build their own toolchain

» In addition to producing a root filesystem, they can also produce a SDK to allow
application developers to build applications/libraries for the target.

» Pre-built

» From your distribution. Ubuntu and Debian have numerous cross-compilers readily
available.

» From various organization: Linaro provides ARM and AArch64 toolchains, Mentor
provides a few free Sourcery CodeBench toolchains, Imagination provides MIPS
toolchains, etc.

» Built it yourself
» Crosstool-NG, tool specialized in building cross-compilation toolchain. By far the
most configurable/versatile.

» Embedded Linux build systems generally all know how to build a cross-compilation
toolchain: Yocto/OpenEmbedded, Buildroot, OpenWRT, etc.

» Crosstool-NG documentation,
https://github.com/crosstool-ng/crosstool-ng/blob/master/docs/

» GCC documentation, https://gcc.gnu.org/onlinedocs/

» Binutils documentation, https://sourceware.org/binutils/docs/

https://github.com/crosstool-ng/crosstool-ng/blob/master/docs/
https://gcc.gnu.org/onlinedocs/
https://sourceware.org/binutils/docs/

Thanks for your attention!

Questions?

Thomas Petazzoni
thomas.petazzoni@bootlin.com

Slides under CC-BY-SA 3.0
http://bootlin.com/pub/conferences/2016/elce/petazzoni-toolchain-anatomy/

http://bootlin.com/pub/conferences/2016/elce/petazzoni-toolchain-anatomy/

