Understanding D-Bus

Myléne Josserand
Free Electrons
mylene.josserand@free-electrons.com

(@© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

» D-Bus generality & IPC
» The D-Bus principles
Differents tools and libraries with demo

v

v

Different projects using D-Bus

v

A short use case with Connman and Ofono

D-Bus generality

» Created in 2002

> Is part of the freedesktop.org project freedesktop.org
» Maintained by RedHat and the community

» Is an Inter-process communication mechanism ‘ redhat

> Initiated to standardize services of Linux

desktop environments

@

» Mechanisms allowing processes to
communicate with each other

» Shared memory: read/write into a
defined memory location

» Memory-mapped file: same as
shared memory but uses a file

» Pipe: two-way data stream
(standard input / output)

» Named pipe: same as pipe but
uses a file (FIFO)

» Socket: communication even on
distant machines

» and others

[€«—————>]

@

» Uses the socket mechanism

» Provides software bus abstraction

» Way simpler than most alternatives

()

How D-Bus is working 7

» D-Bus includes:

» libdbus: a low-level library

» dbus-daemon: a daemon based on libdbus. Handles and controls data transfers
between DBus peers

> two types of busses: a system and a session one. Each bus instance is managed
by a dbus-daemon

> a security mechanism using policy files

9

» System bus

» On desktop, a single bus for all users

» Dedicated to system services

> Is about low-level events such as connection to a network, USB devices, etc
» On embedded Linux systems, this bus is often the only D-Bus type

» Session bus
» One instance per user session
» Provides desktop services to user applications
» Linked to the X session

The principles

» D-Bus is working with different elements:
> Services
Objects
Interfaces
Clients: applications using a D-Bus service

vV VvYyy

» One D-Bus service contains object(s) which implements interface(s)

())
Service
Object 1
Object 2

. J

» An application can expose its services to all D-Bus users by registering to a bus
instance

» A service is a collection of objects providing a specific set of features

> When an application opens a connection to a bus instance, it is assigned a unique
name (ie :1.40)

» Can request a more human-readable service name: the well-known name (ie
org.ofono) See the freedesktop org specification

org.ofono

https://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names-bus

> Are attached to one service
» Can be dynamically created or removed
» Are uniquely identified by an object path (ie / or
/net/connman/technology/cellular)
» Implement one or several interfaces
4 B\
org.ofono
/
- ‘
_ p
_____ fmymodem |
[‘ ‘ [
e —

9

» Can be compared to a “namespace” in Java

» Has a unique name ressembling Java interface names, using dots (ie
org.ofono.Manager)

» Contains members: properties, methods and signals

4 N
org.ofono

(7\

/
- /

9

» Can be compared to a “namespace” in Java

» Has a unique name ressembling Java interface names, using dots (ie
org.ofono.Manager)

» Contains members: properties, methods and signals

4 N
org.ofono

(7\

/
-/— B
- J

» D-Bus defines a few standard interfaces
» They all belong to the namespace “org.freedesktop.DBus” :

» org.freedesktop.DBus.Introspectable : Provides an introspection mechanism.
Exposes information about the object (interfaces, methods and signals it implements)

» org.freedesktop.DBus.Peer : Provides methods to know if a connection is alive
(ping)

» org.freedesktop.DBus.Properties : Provides methods and signals to handle
properties

» org.freedesktop.DBus.ObjectManager : Provides an helpful API to handle
sub-tree objects

> Interfaces expose properties, methods and signals

https://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-introspectable
https://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-peer
https://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-properties
https://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectmanager

» Directly accessible fields
» Can be read / written
» Can be of different types defined by the D-Bus specification :
> basic types: bytes, boolean, integer, double, ...
> string-like types : string, object path (must be valid) and signature
> container-types: structure, array, variant (complex types) and dictionnary entry
(hash)
» Very convenient standard interface : org.freedesktop.DBus.Properties
» Types are represented by characters
byte y | string s | variant %
boolean b | object-path o | array of int32 ai
int32 i | array a | array of an array of int32 aai
uint32 u | struct () | array of a struct with 2 int32 fields a(ii)
double d | dict {} | dict of string and int32 {si}

https://dbus.freedesktop.org/doc/dbus-specification.html#basic-types
https://dbus.freedesktop.org/doc/dbus-specification.html#container-types

allow remote procedure calls from one process to another

v

v

Can be passed one or several parameters

» Can return values/objects

v

Look like any method you could know from other languages

org.freedesktop.DBus.Properties :
Get (String interface_name, String property_name) => Variant value
GetAll (String interface_name) => Dict of {String, Variant} props
Set (String interface_name, String property_name, Variant value)

Messages / notifications

v

Unidirectionnal

v

v

Sent to every clients that are listening to it

» Can contain parameters

v

A client will subscribe to signals to get notifications

org.freedesktop.DBus.Properties :
PropertiesChanged (String, Dict of {String, Variant}, Array of String)

» Adds a security mechanism
> Represented by XML files

» Handled by each dbus-daemon (under /etc/dbus-1/session.d and
/etc/dbus-1/system.d)

» Allows the administrator to control which user can talk to which interface, which
user can send message to which interface, and so on

» |If you are not able to talk with a D-Bus service or get an
org.freedesktop.DBus.Error.AccessDenied error, check this file!

> org.freedesktop.PolicyKitl has been created to handle all security accesses

9

> In this example, "toto” can :

> own the interface org.ofono
> send messages to the owner of the given service
» call GetContexts from interface org.ofono.ConnectionManager

<!DOCTYPE busconfig PUBLIC
¢¢~//freedesktop//DTD D-BUS Bus Configuration 1.0//EN’’
‘‘http://www.freedesktop.org/standards/dbus/1.0/busconfig.dtd’’>
<busconfig>
<policy user="toto">
<allow own="org.ofono"/>
<allow send_destination="org.ofono"/>
<allow send_interface="org.ofono.ConnectionManager" send_member="GetContexts"/>
</policy>
</busconfig>

» Can allow or deny

Tools and libraries

» Libdbus

» This is the low-level library used by the dbus-daemon.

> As the homepage of the project says: “If you use this low-level API directly, you're
signing up for some pain”.

» Recommended to use it only for small programs and you do not want to add many
dependencies

» GDbus

> Is part of GLib (GIO)
» Provides a very comfortable API

» QtDbus

> |Is a Qt module
» Is useful if you already have Qt on your system
» Contains many classes to handle/interact such as QDBusInterface

https://dbus.freedesktop.org/doc/api/html/index.html
https://developer.gnome.org/gio/stable/gdbus-convenience.html
http://doc.qt.io/qt-5/qtdbus-index.html

» Bindings exist for other languages: dbus-python, dbus-java, ...
> All the bindings allow to:
> Interact with existing D-Bus services
» Create your own D-Bus services, objects, interfaces, and so on!
» but... D-Bus is not a high performance IPC
» Should be used only for control and not data
» For example, you can use it to activate an audio pipeline but not to send the audio
stream

» Will present every tool with a demo

» dbus-send: Command-line interface (cli) to call method of interfaces (and get/set
properties)

» dbus-monitor: Cli to subscribe and monitor signals

» gdbus: A GLib implementation of a more complete tool than dbus-send/monitor
» d-feet: A GUI application to handle all D-Bus services

» and others...

https://dbus.freedesktop.org/doc/dbus-send.1.html
https://dbus.freedesktop.org/doc/dbus-monitor.1.html
https://developer.gnome.org/gio/stable/gdbus.html
https://wiki.gnome.org/action/show/Apps/DFeet?action=show&redirect=DFeet

» Can chose the session or system bus (--session or ~-systemn)

> Here is an example:

dbus-send --system --print-reply --dest=org.ofono / org.ofono.Manager.GetModems

i | qmimn eston

9

» Get properties:

dbus-send --system --print-reply --dest=net.connman / net.connman.Clock.GetProperties

» Set property:
dbus-send --system --print-reply --dest=net.connman \
/ net.connman.Clock.SetProperty \
string:TimeUpdates variant:string:manual
» Using standard interfaces:

dbus-send --system --print-reply --dest=net.connman \
/ org.freedesktop.DBus.Introspectable.Introspect

dbus-send --system --print-reply --dest=fi.wl.wpa_supplicantl \

/fi/wl/wpa_supplicantl org.freedesktop.DBus.Properties.Get \
string:fi.wl.wpa_supplicantl string:Interfaces

» Can monitor all traffic (including methods and signals if enabled in policy):
dbus-monitor

» Or filter messages based on the interface:
dbus-monitor --system type=signal interface=net.connman.Clock

> Also provides a command line interface
> Is more featureful than dbus-send because it handles “dict entry”
» Has a different interface: must add a “command” such as “call” or “monitor”
gdbus call --system --dest net.connman \
--object-path / --method net.connman.Clock.GetProperties
gdbus call --system --dest net.connman --object-path / \
--method net.connman.Clock.SetProperty ’TimeUpdates’ "<’manual’>"
gdbus monitor --system --dest net.connman
» Can even emit signals

gdbus emit --session --object-path / --signal \\
net.connman.Clock.PropertyChanged ‘[’TimeUpdates’, ‘‘\<’auto’\>’’]"’

9

» Is a GUI interface
» Handles system and session busses

» Can call methods with parameters

2
a

®.
®

» Alternatives: bustle (dbus-monitor like), D-Bus inspector, ...

Projects using D-Bus

» KDE: A desktop environment based on Qt

» Gnome: A desktop environment based on gtk

» Systemd: An init system

> Bluez: A project adding Bluetooth support under Linux

» Pidgin: An instant messaging client

> Network-manager: A daemon to manage network interfaces

» Modem-manager: A daemon to provide an API to dial with modems - works with
Network-Manager

» Connman: Same as Network-Manager but works with Ofono for modem

» Ofono: A daemon that exposing features provided by telephony devices such as
modem

Use case with ofono & connman

jlkofono

open source telephony

v

Started in 2009
Developed by Intel and Nokia
Used in 2013 by Canonical for Ubuntu-touch

Handles all the different parts to connect a modem: pin code, network
registration, etc

v

v

v

» Communicates with connman using D-Bus

(connman

Started in 2008
Developed by Intel
Used by Sailfish OS and Jolla

Manages internet connexion within embbeded devices

v

v

v

v

v

Provides a plugin based architecture (ofono provides such a plugin to
communicate with the ofono daemon)

vV vV . vY

Ofono and Connman communication is an interesting use case

Ofono handles the connection with a modem
The user interacts with Ofono to enter PIN code, for example

Once the PPP connection is established, Ofono exchanges informations with
Connman

Connman handles all the IP stack of Linux and updates ofono’s informations using
its plugin

N 4 N
ofono connman

> Ay

9

» Connman communicates with Ofono internally

» On the contrary, Ofono exposes its connman plugin so the user can interact with
ConnMan via Ofono's service

Get the properties from ConnMan

dbus-send --system --print-reply --dest=org.ofono /mymodem_0 \
org.ofono.ConnectionManager.GetProperties

Create a context in ConnMan which is used to create the data connection

dbus-send --system --print-reply --dest=org.ofono /mymodem_0O \
org.ofono.ConnectionManager.AddContext string:’internet’

Activate the ConnMan’s context => Ofono’s work ends and

and ConnMan takes over from Ofono

dbus-send --system --print-reply --dest=org.ofono /mymodem_O/contextl \
org.ofono.ConnectionContext.SetProperty \
string:’Active’ variant:boolean:true

org.ofono

org.ofono

net.connman

proxy : net.connman

org.ofono

* A D-Bus proxy establishes a connection
with a D-Bus service

* Once the proxy is opened,

the client application can interact

with the service

| (call methods, get/set properties, ...)

org.ofono

net.connman

proxy : net.connman

Conclusion

» D-Bus is an IPC mechanism using sockets

» Should be used only for control

» Uses services, interfaces and objects

» Provides methods, properties and signals

» Many bindings are available in different languages: Qt, C++, Python, Java, etc

» Used in many projects: the kernel has even tried to implement a kdbus but
abandonned it

Questions? Suggestions? Comments?

Mylene Josserand
mylene. josserand@free-electrons.com

Slides under CC-BY-SA 3.0

http://free-electrons.com/pub/conferences/2016/meetup/dbus/

http://free-electrons.com/pub/conferences/2016/meetup/dbus/

	Understanding D-Bus
	D-Bus generality
	How D-Bus is working ?
	The principles
	Tools and libraries
	Projects using D-Bus
	Use case with ofono & connman
	Conclusion

