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» Embedded Linux engineer at Bootlin

» Embedded Linux expertise

» Development, consulting and training
» Strong open-source focus

» Freely available training materials

» Open-source contributor

» Living in Toulouse, France



Pre-built
binary Linux
distributions

+ Readily available

- Large, usually 100+ MB

- Not available for all architectures
- Not easy to customize

- Generally require native compilation



Manual
system
building

+ Smaller and flexible
- Very hard to handle cross-compilation and dependencies
- Not reproducible

- No benefit from other people's work



Embedded
Linux
build systems

+ Small and flexible

+ Reproducible, handles cross-compilation and dependencies
+ Available for virtually all architectures

- One tool to learn

- Build time
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Open-source components
(from http, ftp, git, svn, etc.)

In-house components
(from http, ftp, git, svn, etc.)
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» Cross-compilation — leveraging fast build machines
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» Building from source — lot of flexibility

» Cross-compilation — leveraging fast build machines

» Recipes for building components — easy
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Is an embedded Linux build system, builds from source:
» cross-compilation toolchain
> root filesystem with many libraries/applications, cross-built
» kernel and bootloader images

Fast, simple root filesystem in minutes

Easy to use and understand: kconfig and make
Small root filesystem, default 2 MB

More than 2300 packages available

Generates filesystem images, not a distribution
Vendor neutral

Active community, stable releases every 3 months
Started in 2001, oldest still maintained build system
http://buildroot.org



http://buildroot.org

%

$ git clone git://git.busybox.net/buildroot
$ cd buildroot
$ make menuconfig




1. Target architecture

v

Architecture

ARC, ARM, AArch64, Blackfin, csky, m68k,
Microblaze, MIPS(64), NIOS 11, OpenRisc,
PowerPC(64), SuperH, SPARC, x86, x86_64,
Xtensa

Specific processor

ABI

Floating point strategy



1. Target architecture

2. Build options

Download directory
Number of parallel jobs
Use of ccache

Shared or static libraries
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etc.



1. Target architecture

2. Build options » Buildroot toolchain
3. Toolchain » Buildroot builds the toolchain
» uClibc, glibc, musl
» External toolchain
» Uses a pre-built toolchain
» Profiles for existing popular toolchains
Linaro, Sourcery CodeBench, etc.
» Custom toolchains



1. Target architecture
2. Build options

3. Toolchain

4. System configuration
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Init system to use: BusyBox, Sysvinit, Systemd

/dev management solution: static, devtmpfs,
mdev, udev

Hostname, password, getty terminal, etc.
Root filesystem overlay
Custom post build and post image scripts

etc.
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Target architecture
Build options
Toolchain _ _
. . » Kernel source (stable version, Git tree, patches)
System configuration _ _
» Kernel configuration
Kernel

» Support for kernel extensions: RTAI, Xenomai,
aufs, etc.



Target architecture
. ) More than 2300 packages
Build options
. Qt4, Qt5, X.org, Gtk, EFL
Toolchain

. . GStreamer, ffmpeg
System configuration
Python, Perl, Ruby, Lua, Erlang

Samba, OpenSSL, OpenSSH, dropbear,
lighttpd

OpenGL support for various platforms

Kernel

ok~ wh =
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Target packages
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» And many, many more libraries and utilities



) » Major filesystem formats supported
1. Target architecture
) ] » cloop
2. Build options ) .
] » cpio, for kernel initramfs
3. Toolchain
4 Svst . " » cramfs
. System configuration
Y & > ext2/3/4
5. Kernel ]
> jffs2
6. Target packages
] ) » romfs
7. Filesystem images
» squashfs
> tar
» ubifs



Filesystem images imx-bootlets, at91bootstrap, etc.

1. Target architecture
2. Build options > Crub2
3. Toolchain u
. . » Syslinux
4. System configuration
» U-Boot
5. Kernel
» Barebox
6. Target packages »
. » and more platform-specific bootloaders:
8.

Bootloaders



Target architecture
Build options
Toolchain

System configuration ) )
» Allows to build some native tools, useful for

Kernel development.

Target packages
Filesystem images
Bootloaders

Host utilities
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» To start the build: make
» Results in output/images:
> rootfs.ext4, root filesystem in ext4 format
» zImage, Linux kernel image
» am335x-pocketbeagle.dtb, Linux kernel Device Tree blob
» u-boot.img, U-Boot bootloader image
» MLO, U-Boot bootloader image

» Ready to be flashed on your embedded system.



> All the output produced by Buildroot is stored in output/

» Can be customized using 0= for out-of-tree build

P> output/ contains

>
>

>

output/build, with one sub-directory for the source code of each component
output/host, which contains all native utilities needed for the build, including the
cross-compiler

output/host/<tuple>/sysroot, which contains all the headers and libraries built
for the target

output/target, which contains almost the target root filesystem

output/images, the final images



1. Check core dependencies

2. For each selected package, after taking care of its dependencies: download,
extract, patch, configure, build, install

» To target/ for target apps and libs

» To host/<tuple>/sysroot for target libs

» To host/ for native apps and libs

> Filesystem skeleton and toolchain are handled as regular packages

Copy rootfs overlay
Call post build scripts

Generate the root filesystem image

o o kW

Call post image scripts



Besides the existing packages and options, there are multiple ways to customize the
generated root filesystem:

» Create custom post-build and /or post-image scripts
» Use a root filesystem overlay, recommended to add all your config files

» Add your own packages



%

package/libmicrohttpd/Config.in

config BR2_PACKAGE_LIBMICROHTTPD
bool "libmicrohttpd"
depends on BR2_TOOLCHAIN_HAS_THREADS
help
GNU libmicrohttpd is a small C library that makes it easy to
run an HTTP server as part of another application.

http://www.gnu.org/software/libmicrohttpd/

comment "libmicrohttpd needs a toolchain w/ threads"
depends on !BR2_TOOLCHAIN_HAS_THREADS

package/Config.in
[...]

source "package/libmicrohttpd/Config.in"
[...]




package/libmicrohttpd/libmicrohttpd.mk

LIBMICROHTTPD_VERSION = 0.9.59

LIBMICROHTTPD_SITE = $(BR2_GNU_MIRROR)/libmicrohttpd
LIBMICROHTTPD_LICENSE = LGPL-2.1+
LIBMICROHTTPD_LICENSE_FILES = COPYING
LIBMICROHTTPD_INSTALL_STAGING = YES
LIBMICROHTTPD_CONF_OPT = --disable-curl --disable-examples

$(eval $(autotools-package))

package/libmicrohttpd/libmicrohttpd.hash

# Locally calculated
sha256 9b9ccd7d0b11b0el7... libmicrohttpd-0.9.59.tar.gz
sha256 70el2e2a60151b9%ed... COPYING




» In order to factorize similar behavior between packages using the same build
mechanism, Buildroot has package infrastructures

>

>
>
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autotools-package for autoconf/automake based packages
cmake-package for CMake based packages

python-package for Python Distutils and Setuptools based packages
generic-package for non-standard build systems

And more: luarocks-package, perl-package, rebar-package,
kconfig-package, etc.



» Pre-defined configurations for popular platforms
» They build a minimal system for the platform
> make <foobar>_defconfig to load one of them

» Some of the configs

Raspberry

BeagleBone

CubieBoard

PandaBoard

Many Atmel development boards
Several Freescale i.MX6 boards
Many QEMU configurations

and more...
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> make list-defconfigs for the full list



» Cross-compilation only: no support for doing development on the target.

> No package management system: Buildroot doesn't generate a distribution,
but a firmware

» Don’t be smart: if you do a change in the configuration and restarts the build,
Buildroot doesn’t try to be smart. Only a full rebuild will guarantee the correct
result.



» Extensive manual: https://buildroot.org/downloads/manual/manual.html

» 3-day training course, with freely available materials:
https://bootlin.com/training/buildroot/

» Mailing list: http://lists.busybox.net/pipermail/buildroot/

» [IRC channel: buildroot on Freenode


https://buildroot.org/downloads/manual/manual.html
https://bootlin.com/training/buildroot/
http://lists.busybox.net/pipermail/buildroot/

>

>

>

Step 1: do a minimal build for the PocketBeagle, with just a bootloader, Linux
kernel and minimal root filesystem. Generate a ready-to-use SD card image.

Step 2: enable network over USB and SSH connectivity using Dropbear. Shows
how to use a rootfs overlay and how to add packages.

Step 3: customize the Linux kernel configuration, compile a small application
that uses the GPIO, first manually, and then using a new Buildroot package

Follow the instructions at https://github.com/e-
ale/Slides/blob/master/buildroot/buildroot-lab.pdf

Don’t hesitate to request help and ask questions!


https://github.com/e-ale/Slides/blob/master/buildroot/buildroot-lab.pdf
https://github.com/e-ale/Slides/blob/master/buildroot/buildroot-lab.pdf

