%

Getting started with
Buildroot

Thomas Petazzoni
thomas.petazzoni@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

bootlin

embedded Linux and kernel engineering

» Embedded Linux engineer at Bootlin

» Embedded Linux expertise

» Development, consulting and training
» Strong open-source focus

» Freely available training materials

» Open-source contributor

» Living in Toulouse, France

Pre-built
binary Linux
distributions

+ Readily available

- Large, usually 100+ MB

- Not available for all architectures
- Not easy to customize

- Generally require native compilation

Manual
system
building

+ Smaller and flexible
- Very hard to handle cross-compilation and dependencies
- Not reproducible

- No benefit from other people's work

Embedded
Linux
build systems

+ Small and flexible

+ Reproducible, handles cross-compilation and dependencies
+ Available for virtually all architectures

- One tool to learn

- Build time

Embedded Linux
build system

root filesystem
image

A4

kernel image

configuration

» Building from source — lot of flexibility

bootloader
image(s)

Y

toolchain

Open-source components
(from http, ftp, git, svn, etc.)

In-house components
(from http, ftp, git, svn, etc.)

Embedded Linux
build system

root filesystem
image

A4

kernel image

!

bootloader
image(s)

configuration

» Building from source — lot of flexibility

» Cross-compilation — leveraging fast build machines

Y

toolchain

Open-source components
(from http, ftp, git, svn, etc.)

In-house components
(from http, ftp, git, svn, etc.)

Embedded Linux
build system

root filesystem
image

A4

kernel image

!

bootloader
image(s)

configuration

» Building from source — lot of flexibility

» Cross-compilation — leveraging fast build machines

» Recipes for building components — easy

Y

toolchain

>

VVyVYyVVVVYVYY

%

Is an embedded Linux build system, builds from source:
» cross-compilation toolchain
> root filesystem with many libraries/applications, cross-built
» kernel and bootloader images

Fast, simple root filesystem in minutes

Easy to use and understand: kconfig and make
Small root filesystem, default 2 MB

More than 2300 packages available

Generates filesystem images, not a distribution
Vendor neutral

Active community, stable releases every 3 months
Started in 2001, oldest still maintained build system
http://buildroot.org

http://buildroot.org

%

$ git clone git://git.busybox.net/buildroot
$ cd buildroot
$ make menuconfig

1. Target architecture

v

Architecture

ARC, ARM, AArch64, Blackfin, csky, m68k,
Microblaze, MIPS(64), NIOS 11, OpenRisc,
PowerPC(64), SuperH, SPARC, x86, x86_64,
Xtensa

Specific processor

ABI

Floating point strategy

1. Target architecture

2. Build options

Download directory
Number of parallel jobs
Use of ccache

Shared or static libraries

vVvyyvyVvVvyy

etc.

1. Target architecture

2. Build options » Buildroot toolchain
3. Toolchain » Buildroot builds the toolchain
» uClibc, glibc, musl
» External toolchain
» Uses a pre-built toolchain
» Profiles for existing popular toolchains
Linaro, Sourcery CodeBench, etc.
» Custom toolchains

1. Target architecture
2. Build options

3. Toolchain

4. System configuration

vy

vVvyyvyy

Init system to use: BusyBox, Sysvinit, Systemd

/dev management solution: static, devtmpfs,
mdev, udev

Hostname, password, getty terminal, etc.
Root filesystem overlay
Custom post build and post image scripts

etc.

o =

Target architecture
Build options
Toolchain _ _
. . » Kernel source (stable version, Git tree, patches)
System configuration _ _
» Kernel configuration
Kernel

» Support for kernel extensions: RTAI, Xenomai,
aufs, etc.

Target architecture
.) More than 2300 packages
Build options
. Qt4, Qt5, X.org, Gtk, EFL
Toolchain

. . GStreamer, ffmpeg
System configuration
Python, Perl, Ruby, Lua, Erlang

Samba, OpenSSL, OpenSSH, dropbear,
lighttpd

OpenGL support for various platforms

Kernel

ok~ wh =
vVvyVvyVvyy

Target packages

v

» And many, many more libraries and utilities

) » Major filesystem formats supported
1. Target architecture
)] » cloop
2. Build options) .
] » cpio, for kernel initramfs
3. Toolchain
4 Svst . " » cramfs
. System configuration
Y & > ext2/3/4
5. Kernel]
> jffs2
6. Target packages
]) » romfs
7. Filesystem images
» squashfs
> tar
» ubifs

Filesystem images imx-bootlets, at91bootstrap, etc.

1. Target architecture
2. Build options > Crub2
3. Toolchain u
. . » Syslinux
4. System configuration
» U-Boot
5. Kernel
» Barebox
6. Target packages »
. » and more platform-specific bootloaders:
8.

Bootloaders

Target architecture
Build options
Toolchain

System configuration))
» Allows to build some native tools, useful for

Kernel development.

Target packages
Filesystem images
Bootloaders

Host utilities

© e N0 R WD

» To start the build: make
» Results in output/images:
> rootfs.ext4, root filesystem in ext4 format
» zImage, Linux kernel image
» am335x-pocketbeagle.dtb, Linux kernel Device Tree blob
» u-boot.img, U-Boot bootloader image
» MLO, U-Boot bootloader image

» Ready to be flashed on your embedded system.

> All the output produced by Buildroot is stored in output/

» Can be customized using 0= for out-of-tree build

P> output/ contains

>
>

>

output/build, with one sub-directory for the source code of each component
output/host, which contains all native utilities needed for the build, including the
cross-compiler

output/host/<tuple>/sysroot, which contains all the headers and libraries built
for the target

output/target, which contains almost the target root filesystem

output/images, the final images

1. Check core dependencies

2. For each selected package, after taking care of its dependencies: download,
extract, patch, configure, build, install

» To target/ for target apps and libs

» To host/<tuple>/sysroot for target libs

» To host/ for native apps and libs

> Filesystem skeleton and toolchain are handled as regular packages

Copy rootfs overlay
Call post build scripts

Generate the root filesystem image

o o kW

Call post image scripts

Besides the existing packages and options, there are multiple ways to customize the
generated root filesystem:

» Create custom post-build and /or post-image scripts
» Use a root filesystem overlay, recommended to add all your config files

» Add your own packages

%

package/libmicrohttpd/Config.in

config BR2_PACKAGE_LIBMICROHTTPD
bool "libmicrohttpd"
depends on BR2_TOOLCHAIN_HAS_THREADS
help
GNU libmicrohttpd is a small C library that makes it easy to
run an HTTP server as part of another application.

http://www.gnu.org/software/libmicrohttpd/

comment "libmicrohttpd needs a toolchain w/ threads"
depends on !BR2_TOOLCHAIN_HAS_THREADS

package/Config.in
[...]

source "package/libmicrohttpd/Config.in"
[...]

package/libmicrohttpd/libmicrohttpd.mk

LIBMICROHTTPD_VERSION = 0.9.59

LIBMICROHTTPD_SITE = $(BR2_GNU_MIRROR)/libmicrohttpd
LIBMICROHTTPD_LICENSE = LGPL-2.1+
LIBMICROHTTPD_LICENSE_FILES = COPYING
LIBMICROHTTPD_INSTALL_STAGING = YES
LIBMICROHTTPD_CONF_OPT = --disable-curl --disable-examples

$(eval $(autotools-package))

package/libmicrohttpd/libmicrohttpd.hash

Locally calculated
sha256 9b9ccd7d0b11b0el7... libmicrohttpd-0.9.59.tar.gz
sha256 70el2e2a60151b9%ed... COPYING

» In order to factorize similar behavior between packages using the same build
mechanism, Buildroot has package infrastructures

>

>
>
| 4
>

autotools-package for autoconf/automake based packages
cmake-package for CMake based packages

python-package for Python Distutils and Setuptools based packages
generic-package for non-standard build systems

And more: luarocks-package, perl-package, rebar-package,
kconfig-package, etc.

» Pre-defined configurations for popular platforms
» They build a minimal system for the platform
> make <foobar>_defconfig to load one of them

» Some of the configs

Raspberry

BeagleBone

CubieBoard

PandaBoard

Many Atmel development boards
Several Freescale i.MX6 boards
Many QEMU configurations

and more...

VYVVVYYVYYVYY

> make list-defconfigs for the full list

» Cross-compilation only: no support for doing development on the target.

> No package management system: Buildroot doesn't generate a distribution,
but a firmware

» Don’t be smart: if you do a change in the configuration and restarts the build,
Buildroot doesn’t try to be smart. Only a full rebuild will guarantee the correct
result.

» Extensive manual: https://buildroot.org/downloads/manual/manual.html

» 3-day training course, with freely available materials:
https://bootlin.com/training/buildroot/

» Mailing list: http://lists.busybox.net/pipermail/buildroot/

» [IRC channel: buildroot on Freenode

https://buildroot.org/downloads/manual/manual.html
https://bootlin.com/training/buildroot/
http://lists.busybox.net/pipermail/buildroot/

>

>

>

Step 1: do a minimal build for the PocketBeagle, with just a bootloader, Linux
kernel and minimal root filesystem. Generate a ready-to-use SD card image.

Step 2: enable network over USB and SSH connectivity using Dropbear. Shows
how to use a rootfs overlay and how to add packages.

Step 3: customize the Linux kernel configuration, compile a small application
that uses the GPIO, first manually, and then using a new Buildroot package

Follow the instructions at https://github.com/e-
ale/Slides/blob/master/buildroot/buildroot-lab.pdf

Don’t hesitate to request help and ask questions!

https://github.com/e-ale/Slides/blob/master/buildroot/buildroot-lab.pdf
https://github.com/e-ale/Slides/blob/master/buildroot/buildroot-lab.pdf

