
Embedded Development Essentials

Getting started with
Buildroot
Thomas Petazzoni
thomas.petazzoni@bootlin.com

© Copyright 2004-2019, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/41

Thomas Petazzoni

▶ CTO/Embedded Linux engineer at Bootlin
▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Strong open-source focus
▶ Freely available training materials

▶ Co-maintainer of Buildroot
▶ Living in Toulouse, France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/41

Building an embedded Linux system

+ Readily available
- Large, usually 100+ MB
- Not available for all architectures
- Not easy to customize
- Generally require native compilation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/41

Building an embedded Linux system

+ Smaller and flexible
- Very hard to handle cross-compilation and dependencies
- Not reproducible
- No benefit from other people’s work

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/41

Building an embedded Linux system

+ Small and flexible
+ Reproducible, handles cross-compilation and dependencies
+ Available for virtually all architectures
- One tool to learn
- Build time

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/41

Embedded Linux build system: principle

▶ Building from source → lot of flexibility

▶ Cross-compilation → leveraging fast build machines
▶ Recipes for building components → easy

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/41

Embedded Linux build system: principle

▶ Building from source → lot of flexibility
▶ Cross-compilation → leveraging fast build machines

▶ Recipes for building components → easy

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/41

Embedded Linux build system: principle

▶ Building from source → lot of flexibility
▶ Cross-compilation → leveraging fast build machines
▶ Recipes for building components → easy

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/41

Buildroot at a glance

▶ Is an embedded Linux build system, builds from source:
▶ cross-compilation toolchain
▶ root filesystem with many libraries/applications, cross-built
▶ kernel and bootloader images

▶ Fast, simple root filesystem in minutes
▶ Easy to use and understand: kconfig and make
▶ Small root filesystem, default 2 MB
▶ More than 2500 packages available
▶ Generates filesystem images, not a distribution
▶ Vendor neutral
▶ Active community, stable releases every 3 months
▶ Started in 2001, oldest still maintained build system
▶ http://buildroot.org

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/41

http://buildroot.org

Today’s lab

▶ Step 1: do a minimal build for the PocketBeagle, with just a bootloader, Linux
kernel and minimal root filesystem. Generate a ready-to-use SD card image.

▶ Step 2: enable network over USB and SSH connectivity using Dropbear. Shows
how to use a rootfs overlay and how to add packages.

▶ Step 3: customize the Linux kernel configuration, compile a small application
that uses the GPIO, first manually, and then using a new Buildroot package

▶ Don’t hesitate to request help and ask questions!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/41

Step 1
Minimal build for the PocketBeagle

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/41

Getting Buildroot

Cloning Buildroot
$ git clone git://git.busybox.net/buildroot
$ cd buildroot

Note: if cloning is too slow, you can use buildroot.tar.xz from the USB stick.

Create a branch based on the latest LTS
$ git checkout -b ede-lab 2019.02.6

Get one U-Boot integration improvement
We need to cherry-pick one more recent commit, to be able to pass arbitrary variables
to the U-Boot build:

$ git cherry-pick cc151c3993090a52d1fef8532f52d74ee6d924c9

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/41

Starting the configuration

▶ Buildroot has a large number of
pre-defined configuration files for
popular HW platforms:
make list-defconfigs

▶ For learning purposes, we are going to
create our own configuration from
scratch for the Pocket Beagle

$ make menuconfig

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/41

menuconfig: Target options

▶ Target architecture: ARM (little endian)
▶ Target architecture variant: Cortex-A8

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/41

Build options

▶ Global patch directories: board/e-ale/pocketbeagle/patches/
▶ We will need to apply one patch to Linux to improve the PocketBeagle Device

Tree description. Buildroot automatically applies patches from global patch
directories subfolders named after Buildroot packages.

▶ We will add those patches once we are done with the configuration.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/41

menuconfig: Toolchain

▶ Toolchain type: External toolchain
▶ Buildroot supports:

▶ Internal toolchain: Buildroot builds a cross-compilation toolchain from scratch.
Flexible, but additional build time needed.

▶ External toolchain: Buildroot downloads and uses a pre-built cross-compilation
toolchain.

▶ On ARM, the ARM-provided toolchain (Arm ARM 2018.11) is automatically
chosen by default as an external toolchain.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/41

menuconfig: System configuration

▶ System host name: ede
▶ System banner: Hello EDE
▶ Init system: keep the default of Busybox, Buildroot also supports systemd,

sysvinit.
▶ /dev management: keep the default of devtmpfs, Buildroot also supports udev,

systemd, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/41

menuconfig: Kernel

▶ Enable Linux Kernel
▶ Kernel version: Custom version
▶ Kernel version: 5.3
▶ No need to specify a path to patches, we are already using the global patch

directory mechanism
▶ Defconfig name: omap2plus
▶ Enable Build a Device Tree Blob
▶ In-tree Device Tree Source file names: am335x-pocketbeagle

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/41

menuconfig: Target packages

▶ Since Busybox is chosen as init system, it is already forcefully selected.
▶ Busybox provides all we need for a minimal Linux system, so no need to enable

other packages.
▶ You can have a look at the choice of 2500+ packages, we’ll use a few more in the

next steps.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/41

menuconfig: Filesystem images

▶ Enable ext2/3/4 root filesystem, and select the ext4 variant
▶ Disable tar the root filesystem

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/41

menuconfig: Bootloaders

▶ Enable U-Boot
▶ Build system: Kconfig. We use a modern U-Boot!
▶ Custom version: 2019.10

▶ Using a fixed version instead of the default version allows to ensure our build will
always build that specific version we have tested.

▶ Board defconfig: am335x_evm
▶ U-Boot binary format: u-boot.img. Indeed, U-Boot itself will be the second

stage bootloader.
▶ Enable U-Boot needs dtc
▶ Enable Install U-Boot SPL binary image. This enables building the first stage

bootloader.
▶ Set U-Boot SPL/TPL binary image name to MLO, the name required on

AM335x.
▶ Set Custom make options to DEVICE_TREE=am335x-pocketbeagle

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/41

Adding the patches

▶ Before starting the build, we need to add the Linux kernel and U-Boot patches
needed to support the Pocket Beagle.

▶ Create the folder board/ede/pocketbeagle/patches/ that we referenced as a
global patch directory

▶ Copy to this folder the contents of the patches/ folder of the USB stick.

$ tree board/e-ale/pocketbeagle/
board/e-ale/pocketbeagle/
- patches
- linux
- 0001-ARM-dts-describe-the-MCP23S18-connected-on-Pocket-Be.patch

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/41

Pre-populating the download folder

▶ By default, Buildroot caches all the downloaded tarballs in dl/
▶ In order to speed up the build process and avoid long download times, we are

going to pre-populate this download folder.
▶ Copy the dl/ folder from the USB stick to the Buildroot source directory.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/41

Doing the build

To run the build, do:

make 2>&1 | tee build.log

This allows to complete log of the build output.
Alternatively, there is a wrapper script provided by Buildroot:

$./utils/brmake

The build will take a while (14-15 minutes on your instructor machine), because the
omap2plus_defconfig kernel configuration has a LOT of features enabled.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/41

During the build: exploring the build output

▶ All the output produced by Buildroot is stored in output/
▶ Can be customized using O= for out-of-tree build
▶ output/ contains

▶ output/build, with one sub-directory for the source code of each component
▶ output/host, which contains all native utilities needed for the build, including the

cross-compiler
▶ output/host/<tuple>/sysroot, which contains all the headers and libraries built

for the target
▶ output/target, which contains almost the target root filesystem
▶ output/images, the final images

▶ dl/ contains downloaded artifacts, can be customized by the BR2_DL_DIR env.
variable

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/41

During the build: summarized build process

1. Check core dependencies
2. For each selected package, after taking care of its dependencies: download,

extract, patch, configure, build, install
▶ To target/ for target apps and libs
▶ To host/<tuple>/sysroot for target libs
▶ To host/ for native apps and libs
▶ Filesystem skeleton and toolchain are handled as regular packages

3. Copy rootfs overlay
4. Call post build scripts
5. Generate the root filesystem image
6. Call post image scripts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/41

Build finished: what do we have ?

▶ ls output/images
▶ MLO, the first stage bootloader
▶ u-boot.img, the second stage bootloader
▶ zImage, the Linux kernel image
▶ am335x-pocketbeagle.dtb, the Linux kernel Device Tree Blob
▶ rootfs.ext4, the root filesystem image

▶ → this doesn’t give us a bootable SD card image
▶ Let’s create one using genimage

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/41

SD card image with genimage: intro

▶ Tool from Pengutronix
▶ Given a configuration file, creates a block device image with a partition table and

filesystems
▶ Need to be called at the very end of the build: we will run it in a post image script
▶ Our SD card image will have:

▶ One FAT partition with bootloader, kernel image and Device Tree
▶ One ext4 partition with the root filesystem

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/41

SD card image with genimage: configuration

▶ In menuconfig
▶ System configuration → Custom scripts to run after creation filesystem

images, set to board/ede/pocketbeagle/post-image.sh
▶ Host utilities, enable host genimage, host mtools, host dosfstools. This will

make sure those tools are built for the build machine
▶ Copy genimage.cfg, post-image.sh and uEnv.txt from the USB stick to

board/ede/pocketbeagle
▶ genimage.cfg, genimage configuration file, have a look at it
▶ post-image.sh, shell script that calls genimage with the appropriate arguments
▶ uEnv.txt, U-Boot script to boot the system

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/41

SD card image: building and booting

▶ Start the build again with make
▶ It will only build a few additional tools (genimage, etc.) and produce the SD card

image
▶ The SD card image will be output/images/sdcard.img
▶ Transfer to your SD card

$ sudo dd if=output/images/sdcard.img of=/dev/mmcblk0 bs=1M

▶ Insert the SD card in the PocketBeagle, and boot it (serial port at 115200 bps)
▶ Login as root, no password.
▶ System weights 18.4 MB, of which 12.1 MB are kernel modules

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/41

Storing our Buildroot configuration persistently

▶ Our current configuration is stored in .config
▶ Will be lost upon make distclean
▶ Or if we create a different configuration for a different project

▶ Save it as a defconfig file:

$ make BR2_DEFCONFIG=configs/ede_pocketbeagle_defconfig savedefconfig

▶ And have a look at configs/ede_pocketbeagle_defconfig

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/41

Step 2
Network connectivity over USB: SSH

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/41

Network configuration: using a rootfs overlay

▶ To enable network over USB, we will need:
▶ An init script that loads the relevant kernel modules and uses configfs to set up the

USB gadget device. It will be installed as /etc/init.d/S30usbgadget.
▶ A customized /etc/network/interfaces file

▶ We will use a root filesystem overlay to add those customizations to the root
filesystem.

▶ In menuconfig
▶ System configuration, set Root filesystem overlay directories to

board/ede/pocketbeagle/overlay/
▶ System configuration, set Root password to a non-empty one
▶ Target packages, Networking applications, enable dropbear

▶ Copy the contents of overlay/ from the USB stick to
board/ede/pocketbeagle/overlay/, and of course, have a look at it!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/41

Using the network

▶ Restart the build

$ make 2>&1 | tee build.log

▶ Reflash the SD card
▶ Boot
▶ On your PC, configure the new network interface with the IP address 192.168.42.1
▶ If you’re using network manager:

$ nmcli con add con-name buildroot-target type ethernet \
ifname enp57s0u1u6u4 ip4 192.168.42.1/24

▶ SSH into the board, from your PC:

$ ssh root@192.168.42.2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/41

Step 3
Developing an application

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/41

Adding libgpiod and GPIO support

▶ We are going to write a demo application based on the libgpiod library, to
manipulate GPIOs.

▶ Let’s first add this library in your Buildroot configuration, in menuconfig, enable
BR2_PACKAGE_LIBGPIOD and its tools.

▶ We also need to enable the GPIO kernel driver, using the option
CONFIG_PINCTRL_MCP23S08. To do this, run make linux-menuconfig, which
will open up the Linux kernel menuconfig, and enable the driver.
▶ Note: this change would be lost during a make clean. To make it persistent, using

a configuration file fragment would be appropriate.
▶ Run make to rebuild the system, reflash on the SD card, and reboot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/41

Testing GPIO support

▶ We can list the list the GPIO chips using gpiodetect:

gpiodetect

▶ We can use the GPIOs using gpioset:

gpioset gpiochip4 0=0
gpioset gpiochip4 1=0
gpioset gpiochip4 1=1
gpioset gpiochip4 0=1

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/41

Cross-compiling a simple application

▶ Let’s now build a simple application to see how to use the Buildroot cross-compiler
▶ Copy the ede-gpio-app folder from the USB stick side-by-side with Buildroot:

- buildroot/
- ede-gpio-app/
- ede-gpio-app.c
- Makefile

▶ To build the application:

$./output/host/bin/arm-linux-gnueabihf-gcc -o ede-gpio-app \
../ede-gpio-app/ede-gpio-app.c -lgpiod

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/41

Running the application on the target

▶ Copy it to the target:

$ scp ede-gpio-app root@192.168.42.2:

▶ And run it:

./ede-gpio-app

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/41

Buildroot package for our application

▶ Building manually is fine for quick experiments, but we definitely want the build
process to be fully automated by Buildroot.

▶ In order to do this, one can create new packages for the different
applications/libraries that should be compiled and installed in the target root
filesystem.

▶ A package in Buildroot consists of:
▶ package/<pkg>/Config.in, describing the configuration options, in the kconfig

syntax
▶ package/<pkg>/<pkg>.mk, describing how to download, build and install the

package, written in make
▶ package/<pkg>/<pkg>.hash, containing hashes to validate that the downloaded

have the expected contents
▶ package/<pkg>/*.patch, patches to apply to the package source code, if needed

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/41

Creating the package: Config.in

package/ede-gpio-app/Config.in
config BR2_PACKAGE_EDE_GPIO_APP

bool "ede-gpio-app"
depends on BR2_TOOLCHAIN_HEADERS_AT_LEAST_4_8 # libgpiod
select BR2_PACKAGE_LIBGPIOD
help
This is the EDE GPIO demo application.

comment "ede-gpio-app needs kernel headers >= 4.8"
depends on !BR2_TOOLCHAIN_HEADERS_AT_LEAST_4_8

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/41

Creating the package: including Config.in

package/Config.in
...

source "package/ede-gpio-app/Config.in"
...

You can run make menuconfig, and see that your new option is there!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/41

Creating the package: ede-gpio-app.mk

package/ede-gpio-app/ede-gpio-app.mk
##
#
ede-gpio-app
#
##

EDE_GPIO_APP_SITE = $(TOPDIR)/../ede-gpio-app
EDE_GPIO_APP_SITE_METHOD = local
EDE_GPIO_APP_DEPENDENCIES = libgpiod

define EDE_GPIO_APP_BUILD_CMDS
$(TARGET_MAKE_ENV) $(MAKE) $(TARGET_CONFIGURE_OPTS) -C $(@D)

endef

define EDE_GPIO_APP_INSTALL_TARGET_CMDS
$(TARGET_MAKE_ENV) $(MAKE) $(TARGET_CONFIGURE_OPTS) -C $(@D) \

DESTDIR=$(TARGET_DIR) install
endef

$(eval $(generic-package))

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/41

Creating the package: using it

▶ Enable your new package in make menuconfig
▶ Run the build with make
▶ Reflash your SD card and reboot
▶ Your new application is in /usr/bin on the target

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/41

Documentation and support

▶ Extensive manual: https://buildroot.org/downloads/manual/manual.html
▶ 3-day training course, with freely available materials:

https://bootlin.com/training/buildroot/
▶ Mailing list: http://lists.busybox.net/pipermail/buildroot/
▶ IRC channel: buildroot on Freenode

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/41

https://buildroot.org/downloads/manual/manual.html
https://bootlin.com/training/buildroot/
http://lists.busybox.net/pipermail/buildroot/

	Getting started with Buildroot

