
1
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Ottawa Linux Symposium 2007

Created with OpenOfce.org 2.2

Readahead
Time Travel Techniques

For Desktop and Embedded Systems

Michael Opdenacker
Bootlin

https://bootlin.com

https://bootlin.com/
http://openoffice.org/
https://bootlin.com/

2
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Question
Ever dreamed of a device to accelerate the course of Time?

To watch the end of the “Lost” TV show
before you retire

To build faster CPUs moving electrons at Warp 9.99

To confgure sendmail in 2 minutes

To remove all bugs from your Perl scripts
before you stop understanding your own code.

To pass US immigration in just 2 hours

Such a device exists: it's called readahead.

https://bootlin.com/

3
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Oops... going forward too fast
World domination

https://bootlin.com/

4
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Contents
Introduction

Readahead in kernel space

Readahead in user space

Trying to improve user-space implementations
Applications for embedded systems

https://bootlin.com/

5
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Readahead techniques

Introduction to readahead

https://bootlin.com/

6
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

The page cache

Block storage

Filesystem
driver

Virtual File
System

RAM

Access
to fle

File
cache

Copy

Block
driver

Linux copies each fle into the file iciaicihie before
accessing it.

Useful to speed up subsequent accesses
to the same fle. No more I/O wait.

Yields best results
when plenty of free RAM is available.

Otherwise, Linux only keeps the most
recently accessed pages.

https://bootlin.com/

7
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Reading ahead
Idea: to accelerate access to fles

Preload fles in the fle cache (entirely or in parts)
before they are actually used.

When each fle or program is accessed,
there is no more I/O wait. Rescheduling not needed.
Much better performance.

Best done when spare I/O resources are available,
typically when tasks keep the processor busy.

But this requires the ability to predict the future!

https://bootlin.com/

8
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Possible predictions
Fortunately, our systems are predictable in some cases

File blocks being accessed in a sequential way:
the next blocks are very likely to be read too.

System startup:
the same executables and data fles are read in the same order.

Application startup:
the same parts of program text, shared libraries,
resource or input fles are accessed.

https://bootlin.com/

9
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Benefts of reading ahead
Reading ahead ciainciain bring the following benefts:

Reduced system and application startup time

Improved disk throughput:
more requests fed to the I/O scheduler, which can do a better job
at reordering requests to minimize disk head moves.

Better utilization of CPU resources:
less I/O wait, so less rescheduling and context switching.

https://bootlin.com/

10
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Readahead techniques

Kernel space readahead

https://bootlin.com/

11
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Readahead in the standard kernel (1)
Status in Linux 2.6.20

Implemented with 2 read windows, when sequential fle read is detected.

If sequential reading continues, the process never waits for I/O.

 Current read window
(already read ahead)

Ahieaid read window
(reading ahead in progress)

Ofset in
the open fle
scale: pages

Current
read ofset

When this page is reached:
- the ahead window becomes the current one
- a new ahead window is created
(possibly shorter or larger)

https://bootlin.com/

12
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Readahead in the standard kernel (2)
The kernel automatically checks how efective readahead is

If page misses are encountered:
some of the pages were reclaimed before being accessed by the process.
Action: reduce the window size, down to VM_MIN_READAHEAD (16 KB)

Otherwise:
Increase the window size, up to VM_MAX_READAHEAD (128 KB)

If page cache hits are encountered during readahead:
the fle is partly or fully in page cache.
Readahead is then useless. Disable it.

Implementation details found on mm/readahead.c in kernel sources.

https://bootlin.com/

13
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Adaptive readahead patchset
Proposed by Fengguang Wu
since September 2005.
Posted in the Linux kernel mailing list.

Added features:

Readahead window
which can grow up to 1 MB

Parallel, interleaved sequential scans
on 1 fle

Sequential reads across
fle open / close

Mixed sequential / random access

Sparse / skimming sequential read

Backward sequential reading

Delaying readahead if the disk is
spinned down in laptop mode.

The last benchmarks show access time
improvements in most cases.

Also released a simpler patchset:
“on-demand readahead”.

Fengguang Wu is here in Ottawa!
Don't miss his presentation
on Friday (11:00 - 11:45).

https://bootlin.com/

14
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Readahead techniques

User space readahead interface

https://bootlin.com/

15
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Need for a userspace interface
Though the kernel can do a great job predicting fle access from

current and recent application behavior, there are things a general
purpose kernel cannot predict.

Fortunately, system developers can use system calls to let the kernel
know about their own predictions:

readahead: load fle blocks into the fle cache

fadvise: announce fle access patterns

madvise: announce memory access patterns

https://bootlin.com/

16
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

readahead system call
Make the kernel load count bytes in the fle, starting from ofset.

ssize_t readahead(int fd, off64_t *offset,
size_t count);

I/O is performed in whole pages.
offset and offset+count are rounded to page boundaries

The function blocks until all data have been read.
Typically called in a parallel thread.

https://bootlin.com/

17
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

fadvise system call
Several variants:

posix_fadvise, fadvise64, fadvise64_64.

int posix_fadvise(int fd, off_t offset,
off_t len, int advice);

Here's how the kernel interprets the advice setting:
POSIX_FADV_NORMAL: use default readahead window size
POSIX_FADV_SEQUENTIAL: double window size
POSIX_FADV_RANDOM: disable readahead
POSIX_FADV_WILLNEED: reads the specifed region in fle cache
POSIX_FADV_NOREUSE: same, but data just used once
POSIX_FADV_DONTNEED: free the corresponding cached pages.

Note that the kernel is free to ignore this advise.

https://bootlin.com/

18
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

madvise system call
int madvise(void *start, size_t length,int advice);

Similar to fadvise, but corresponding to the address space of a process.

https://bootlin.com/

19
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Using the userspace interface
The readahead system call should be used with care!

Caution: the readahead system call is binding. It forces the kernel to
load pages in RAM. There shouldn't be multiple parts of the
system trying to be smart like this.

Best to use the non binding interfaces: fadvise and madvise,
and let the kernel arbitrate between resource requests.

https://bootlin.com/

20
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Readahead techniques

Implementations in GNU/Linux distributions

https://bootlin.com/

21
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Ubuntu
Observed on Edgy 6.10

/etc/readahead/boot:
list of fles which are accessed during the boot process.

/sbin/readahead-list:
Orders these fles according to their disk order (frst block at
least), and reads them ahead. No more runs as a background job.

/sbin/readahead-watch:
Uses inotify to get the list of fles accessed during startup.
Stopped by /etc/init.d/stop-readahead.

https://bootlin.com/

22
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Fedora Core 6
/usr/sbin/readahead

Similar implementation and interface. It also orders fles to reduce
disk seeks, but with special optimizations for ext2 and ext3.

/etc/readahead.d/default.early
Files accessed by init scripts.

/etc/readahead.d/default.later
Files used by the graphical desktop and user applications.

No utility is given to update these fles,
which are generated from templates.

https://bootlin.com/

23
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Benchmarks
Measuring time in the last init script

Comments:

Ubuntu almost achieves a 20% boot time reduction

Fedora Core: more difcult to measure, because it also tries to speed up application
startup.

https://bootlin.com/

24
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Shortcomings
Things that could be improved

Reading entire fles: too much in some cases.
Demand paging: the kernel only loads the pages of programs
and shared libraries which are actually accessed.
This wastes I/O time and RAM.

Not taking into account fle access order.
It could be that a fle is read ahead after it is actually used.

https://bootlin.com/

25
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Readahead techniques

Implementing readahead in embedded systems

https://bootlin.com/

26
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Embedded system requirements
RAM is scarce and perhaps slow to access

Shouldn't readahead fle pages which are not needed.

Shouldn't load pages too much in advance.
They could be reclaimed even before they are used.

Slow CPU and limited storage

Need for simple and fast implementations, typically in C.

https://bootlin.com/

27
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

BusyBox readahead applet
Available on http://busybox.net

Usage:
readahead <files>

Make it easy to add manual readahead to your startup scripts,
in particular when your embedded system already uses BusyBox!

https://bootlin.com/

28
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Tracing accessed fle blocks
Not trivial to do. Apparently no interface do do it.

Can't be done with inotify. We just now about accessed fles.

Intercepting read and exec system calls, through C library
interposers. However, no information on demand paging
for libraries, executables and mapped fles.

A solution: tracing kernel flesystem access functions
vfs_read: reading from fles
filemap_nopage: demand paging activity
open_exec: tracing all executions (explained later)

Any other idea?

https://bootlin.com/

29
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Tracing implementation
Could have been done easily with SystemTap.

But SystemTap should be complicated to use in embedded systems
(user space tools to install, arm and mips not fully supported).

Quick and dirty solution for desktop and embedded systems:
a kernel patch dumping information on the kernel log.

Seems to be too much information for klogd.
(looses the frst messages).
Best to dump the messages on a serial console.

The patch is available on the project page.

https://bootlin.com/

30
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Dumped raw data
...
RAINFO exec 621770 3 3
RAINFO read 621770 3 3 0 128
RAINFO nopage 924793 3 3 8036352 4096
RAINFO nopage 585470 3 3 1933312 4096
RAINFO nopage 456803 3 3 1835008 4096
RAINFO nopage 456803 3 3 8278016 4096
RAINFO nopage 456803 3 3 1691648 4096
RAINFO nopage 456803 3 3 483328 4096
RAINFO nopage 456803 3 3 786432 4096

 event inode ofset size
 device major

device minor

https://bootlin.com/

31
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

readahead-blocks-digest

Our Python script to digest raw data:

Turns inodes into fle paths
(done by recording inode numbers for each fle in the flesystem)

Merges consecutive blocks

Outputs statistics

https://bootlin.com/

32
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Output fle statistics
Ubuntu Edgy 6.10 excerpt
/sbin/udevd : 53248 / 55232 (96%)
/lib/libselinux.so.1 : 42460 / 75228 (56%)
/lib/libsepol.so.1 : 19232 / 203552 (9%)
/sbin/dhclient3 : 256956 / 433084 (59%)
/lib/tls/i686/cmov/libnss_nis-2.4.so : 17936 / 34320 (52%)
/lib/tls/i686/cmov/libnsl-2.4.so : 26336 / 75488 (34%)
/bin/sed : 39208 / 39208 (100%)
/etc/init.d/checkroot.sh : 9875 / 9875 (100%)
/lib/init/vars.sh : 113 / 113 (100%)
/etc/default/rcS : 261 / 261 (100%)
/lib/lsb/init-functions : 7744 / 7744 (100%)
/etc/lsb-base-logging.sh : 3770 / 3770 (100%)
...
Total file size : 98477782
Total read size : 46655799(47%)

https://bootlin.com/

33
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Output block information
Ubuntu Edgy 6.10 excerpt
/sbin/udevd 0 53248
/lib/libselinux.so.1 0 16384 32768 40960 45056 49152 57344
65536 69632 75228
/lib/libsepol.so.1 0 12288 184320 188416 200704 203552
/sbin/dhclient3 0 16384 20480 57344 90112 122880 135168
155648 172032 176128 184320 196608 204800 208896 212992
225280 229376 233472 282624 294912 299008 319488 327680
348160 352256 356352 368640 376832 380928 389120 393216
433084
/lib/tls/i686/cmov/libnss_nis-2.4.so 0 8192 16384 20480
28672 34320
/lib/tls/i686/cmov/libnsl-2.4.so 0 16384 65536 75488
/bin/sed 0 39208
/etc/init.d/checkroot.sh 0 9875
...

https://bootlin.com/

34
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

readahead-blocks program
The program running on the target system

Coded in C

Based on the readahead-list code found in Ubuntu
(from Robin Hugh Johnson and Erich Schubert)

Takes a block information fle as input.

Reads ahead fle blocks following system startup order.

https://bootlin.com/

35
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Ubuntu Edgy statistics
Statistics:

Total fle size: 93.9 MB

Read fle size: 44.5 MB

Only 47% of Ubuntu readahead I/O is useful!

https://bootlin.com/

36
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Ubuntu Edgy frst results
Disappointing results!

I did check that
readahead-blocks is actually doing
something.

readahead-blocks reads less data, but
the benefts are canceled by more disk head
moves.

Will soon update
readahead-blocks-digest to write
blocks in on-disk order.
It will beat readahead-list for sure!No

reada-
head

readahead-
list

readahead-
blocks

0

5

10

15

20

25

30

35

40

45

50
/proc/uptime information

Boot time
Idle time

https://bootlin.com/

37
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

New victim: HP iPAQ h2200
Perfectly supported by Linux

http://handhelds.org/projects/h2200

Running the Familiar 0.8.4 distribution
(not at all optimized for boot time:
easy victim?)

CPU: pxa255 (400 MHz)

RAM: 64 MB

Booting from Compact Flash (IDE):
Sandisk Ultra II

https://bootlin.com/
http://handhelds.org/projects/h2200

38
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Familiar 0.8.4 statistics
Statistics:

Total fle size: 20.4 MB

Read fle size: 9.3 MB (45 %)

https://bootlin.com/

39
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Familiar 0.8.4 results
Disappointing results too!

I did check that
readahead-blocks is actually doing
something.

No disk head moves: readahead-list now
has a handicap. Kernel readahead also has
less handicap.

Need to try with slower Compact Flash storage.
Could expect more signifcant gains.

The CPU latency / storage latency ratio is greater
too. Less idle time and reduced beneft
outlook.

RAM access is slower too.

No
reada-
head

reada-
head-list
(parallel)

reada-
head-
blocks
(parallel)

reada-
head-
blocks (not
parallel)

0

10

20

30

40

50

60

70
/proc/uptime information

Boot time
Idle time

https://bootlin.com/

40
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Event triggered read-ahead
Proposed for embedded systems with very little RAM.
Implemented in the future

https://bootlin.com/

41
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Lessons learned (1)
readahead-list: reads way too much

(because of demand paging)

Hard disk storage: minimizing disk head seeks saves much more
time than reading only the needed blocks.

Embedded systems with fash storage:
benefts more difcult to achieve, unless fash access is very slow.
Slower CPU and RAM access could be bottlenecks.

https://bootlin.com/

42
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Lessons learned (2)
Decision criterion:

Measure idle time before investigating readahead solutions.
A low idle time / boot time ratio means less to win.

Better to be humble, and let the kernel do its job.
However, feed it with as much advise as possible,
and it will make the best decisions, without sacrifcing
performance.

https://bootlin.com/

43
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Future work
Hard disk storage: read blocks by on-disk order.

This will be better than today's readahead-list implementation.

Try with fadvise instead of readahead

Embedded systems: confrm greater benefts on slow fash.

Embedded systems with very little RAM:
implement the event-triggered readahead window.

https://bootlin.com/

44
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

Other ways of accelerating time
Disable console output

Disable delay loop calibration

Starting system services in parallel

Prelinking

Reduce forking in shells.
Use the standalone shell option of Busybox

Faster flesystems (SquashFS!)

See http://elinux.org/Boot_Time for details and more!

https://bootlin.com/
http://elinux.org/Boot_Time

45
Readahead: Time Travel Techniques For Desktop and Embedded Systems

© Copyright 2007, Bootlin
Creative Commons Attribution-ShareAlike 2.5 license

https://bootlin.com Aug 16, 2018

References
Our readahead project page:

https://bootlin.com/community/tools/readahead/
Even more interesting in the future!

More details and references on our paper:
https://bootlin.com/pub/readahead/doc/ols2007-readahead.pdf

Linux Readahead: Less Tricks For More
Fengguang Wu, Room Emperor, 11h00 - 11h45 on Friday

Thank you!
Questions or suggestions?

https://bootlin.com/
https://bootlin.com/community/tools/readahead/
https://bootlin.com/pub/readahead/doc/ols2007-readahead.pdf

	READAHEAD - Time Travel Techniques for Desktop and Embedded Systems
	Question
	Oops... going forward too fast
	Contents
	INTRODUCTION TO READAHEAD
	The page cache
	Reading ahead
	Possible predictions
	Benefits of reading ahead
	READAHEAD TECHNIQUES - kernelspace readahead
	Readahead in the standard kernel (1)
	Readahead in the standard kernel (2)
	Adaptive readahead patchset
	READAHEAD TECHNIQUES - User space readahead interface
	Need for a userspace interface
	readahead system call
	fadvise system call
	madvise system call
	Using the userspace interface
	IMPLEMENTATIONS IN GNU/LINUX DISTRIBUTIONS
	Ubuntu
	Fedora Core 6
	Benchmarks
	Shortcomings
	IMPLEMENTING READAHEAD IN EMBEDDED SYSTEMS
	Embedded system requirements
	BusyBox readahead applet
	Tracing accessed file blocks
	Tracing implementation
	Dumped raw data
	readahead-blocks-digest
	Output file statistics
	Output block information
	readahead-blocks program
	Ubuntu Edgy statistics
	Ubuntu Edgy first results
	New victime: HP iPAQ h2200
	Familiar 0.8.4 statistics
	Familiar 0.8.4 results
	Event triggered read-ahead
	Lessons learned (1)
	Lessons learned (2)
	Future work
	Other ways of accelerating time
	References

