

# Embedded Linux system development training On-line seminar, 7 sessions of 4 hours Latest update: April 26, 2024

| Title               | Embedded Linux system development training                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Training objectives | <ul> <li>Be able to understand the overall architecture of Embedded Linux systems.</li> <li>Be able to choose, build, setup and use a cross-compilation toolchain.</li> <li>Be able to understand the booting sequence of an embedded Linux system, and to set up and use the U-Boot bootloader.</li> <li>Be able to select a Linux kernel version, to configure, build and install the Linux kernel on an embedded system.</li> <li>Be able to create from scratch a Linux root filesystem, including all its elements: directories, applications, configuration files, libraries.</li> <li>Be able to choose and setup the main Linux filesystems for block and flash storage devices, and understand their main characteristics.</li> <li>Be able to interact with hardware devices, configure the kernel with appropriate drivers and extend the <i>Device Tree</i></li> <li>Be able to select, cross-compile and integrate open-source software components (libraries, applications) in an Embedded Linux system, and to handle license compliance.</li> <li>Be able to setup and use an embedded Linux build system, to build a complete system for an embedded platform.</li> </ul> |
| Duration            | Seven half days - 28 hours (4 hours per half day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Pedagogics          | <ul> <li>Lectures delivered by the trainer, over video-conference. Participants can ask questions at any time.</li> <li>Practical demonstrations done by the trainer, based on practical labs, over video-conference. Participants can ask questions at any time. Optionally, participants who have access to the hardware accessories can reproduce the practical labs by themselves.</li> <li>Instant messaging for questions between sessions (replies under 24h, outside of week-ends and bank holidays).</li> <li>Electronic copies of presentations, lab instructions and data files. They are freely available at https://bootlin.com/doc/training/embedded-linux.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Trainer             | One of the engineers listed on:<br>https://bootlin.com/training/trainers/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



| Language           | Oral lectures: English, French, Italian.<br>Materials: English.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Audience           | People developing devices using the Linux kernel<br>People supporting embedded Linux system developers.                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Prerequisites      | <ul> <li>Knowledge and practice of UNIX or GNU/Linux commands: participants must be familiar with the Linux command line. Participants lacking experience on this topic should get trained by themselves, for example with our freely available on-line slides at bootlin.com/blog/command-line/.</li> <li>Minimal English language level: B1, according to the <i>Common European Framework of References for Languages</i>, for our sessions in English. See bootlin.com/pub/training/cefr-grid.pdf for self-evaluation.</li> </ul> |
| Required equipment | <ul> <li>Computer with the operating system of your choice, with the Google<br/>Chrome or Chromium browser for videoconferencing.</li> <li>Webcam and microphone (preferably from an audio headset)</li> <li>High speed access to the Internet</li> </ul>                                                                                                                                                                                                                                                                             |
| Certificate        | Only the participants who have attended all training sessions, and who have scored over 50% of correct answers at the final evaluation will receive a training certificate from Bootlin.                                                                                                                                                                                                                                                                                                                                              |
| Disabilities       | Participants with disabilities who have special needs are invited to contact us at <i>training@bootlin.com</i> to discuss adaptations to the training course.                                                                                                                                                                                                                                                                                                                                                                         |



Hardware platform for practical demos, option #1

One of these Discovery Kits from STMicroelectronics: STM32MP157A-DK1, STM32MP157D-DK1, STM32MP157C-DK2 or STM32MP157F-DK2

- STM32MP157, dual Cortex-A7 processor from STMicroelectronics
- USB powered
- 512 MB DDR3L RAM
- Gigabit Ethernet port
- 4 USB 2.0 host ports
- 1 USB-C OTG port
- 1 Micro SD slot
- On-board ST-LINK/V2-1 debugger
- · Arduino compatible headers
- Audio codec, buttons, LEDs
- LCD touchscreen (DK2 kits only)

## Hardware platform for practical demos, option #2

## BeagleBone Black or BeagleBone Black Wireless board

- An ARM AM335x (single Cortex-A8) processor from Texas Instruments
- USB powered
- 512 MB of RAM
- 2 or 4 GB of on-board eMMC storage
- USB host and device
- HDMI output
- 2 x 46 pins headers, to access UARTs, SPI buses, I2C buses and more.
- Ethernet or WiFi





Hardware platform for practical labs, option #3

## BeaglePlay board

- Texas Instruments AM625x (4xARM Cortex-A53 CPU)
- SoC with 3D acceleration, integrated MCU and many other peripherals.
- 2 GB of RAM
- 16 GB of on-board eMMC storage
- USB host and USB device, microSD, HDMI
- 2.4 and 5 GHz WiFi, Bluetooth and also Ethernet
- 1 MicroBus Header (SPI, I2C, UART, ...), OLDI and CSI connector.



## Half day 1

## Lecture - Introduction to embedded Linux

- Advantages of Linux versus traditional embedded operating systems.
- Typical hardware platforms used to run embedded Linux systems.
- Overall architecture of embedded Linux systems: overview of the major software components.
- Development environment for Embedded Linux development.

# Lecture - Cross-compiling toolchain and C library

- What's inside a cross-compiling toolchain
- Choosing the target C library
- What's inside the C library
- Ready to use cross-compiling toolchains
- Building a cross-compiling toolchain with automated tools.

- Lab Cross compiling toolchain
  - Getting and configuring Crosstool-NG
  - Executing it to build a custom crosscompilation toolchain
  - Exploring the contents of the toolchain



#### Lecture - Boot process, firmware, bootloaders

- Booting process of embedded platforms, focus on the x86 and ARM architectures
- Boot process and bootloaders on *x*86 platforms (legacy and UEFI)
- Boot process on ARM platforms: ROM code, bootloaders, ARM Trusted Firmware
- Focus on U-Boot: configuration, installation, and usage.
- U-Boot commands, U-Boot environment, U-Boot scripts, U-Boot generic distro boot mechanism

## Half day 2

#### Lab - Bootloader and U-boot

- Set up serial communication with the board.
- Configure, compile and install U-Boot for the target hardware.
- Only on STM32MP1: configure, compile and install Trusted Firmware-A
- Become familiar with U-Boot environment and commands.
- Set up TFTP communication with the board. Use TFTP U-Boot commands.

Using the embedded hardware platform.

#### Lecture - Linux kernel

- Role and general architecture of the Linux kernel
- Separation between kernel and user-space, and interfaces between user-space and the Linux kernel
- Understanding Linux kernel versions: choosing between vendor-provided kernel and upstream kernel, *Long Term Support* versions
- Getting the Linux kernel source code

#### Lab - Fetching Linux kernel sources

- Clone the mainline Linux tree
- Accessing stable releases



## Lecture - Configuring, compiling and booting the Linux kernel

- Configuring the Linux kernel: ready-made configuration files, configuration interfaces
- Concept of *Device Tree*
- Cross-compiling the Linux kernel
- Study of the generated files and their role
- Installing and booting the Linux kernel
- The Linux kernel command line

#### Lab - Kernel cross-compiling and booting

- · Configuring the Linux kernel and crosscompiling it for the embedded hardware platform.
- Downloading your kernel on the board through U-boot's TFTP client.
- Booting your kernel.
- Automating the kernel boot process with U-Boot scripts.

Using the embedded hardware platform

## Half day 3

| Lecture – Root filesystem in Linux | Lecture - BusyBox                                         |
|------------------------------------|-----------------------------------------------------------|
| • Filesystems in Linux.            | <ul> <li>Detailed overview. Detailed features.</li> </ul> |

- · Role and organization of the root filesystem.
- Location of the root filesystem: on storage, in memory, from the network.
- Device files, virtual filesystems.
- Contents of a typical root filesystem.

- Configuration, compiling and deploying.

## Lab – Tiny root filesystem built from scratch with BusyBox

- Setting up a kernel to boot your system on a workstation directory exported by NFS
- · Passing kernel command line parameters to boot on NFS
- Creating the full root filesystem from scratch. Populating it with BusyBox based utilities.
- System startup using BusyBox init
- Using the BusyBox HTTP server.
- Controlling the target from a web browser on the PC host.
- Setting up shared libraries on the target and compiling a sample executable.

## Using the embedded hardware platform



## Lecture - Accessing hardware devices

- How to access hardware on popular busses: USB, SPI, I2C, PCI
- Usage of kernel drivers and direct userspace access
- The *Device Tree* syntax, and how to use it to describe additional devices and pin-muxing
- Finding Linux kernel drivers for specific hardware devices
- Using kernel modules
- Hardware access using /dev and /sys
- User-space interfaces for the most common hardware devices: storage, network, GPIO, LEDs, audio, graphics, video

### Lab - Accessing hardware devices

- Exploring the contents of /dev and /sys and the devices available on the embedded hardware platform.
- Using GPIOs and LEDs.
- Modifying the Device Tree to control pin multiplexing and to declare an I2C-connected joystick.
- Adding support for a USB audio card using Linux kernel modules
- Adding support for the I2C-connected joystick through an out-of-tree module.

Using the embedded hardware platform

## Lecture - Block filesystems

- Accessing and partitioning block devices.
- Filesystems for block devices.
- Usefulness of journaled filesystems.
- Read-only block filesystems.
- RAM filesystems.
- How to create each of these filesystems.
- Suggestions for embedded systems.

## Lab - Block filesystems

- Creating partitions on your SD card
- Booting a system with a mix of filesystems: *SquashFS* for the root filesystem, *ext4* for system data, and *tmpfs* for temporary system files.

Using the embedded hardware platform



## Lecture - Flash filesystems

- The Memory Technology Devices (MTD) filesystem.
- Filesystems for MTD storage: JFFS2, Yaffs2, UBIFS.
- Kernel configuration options
- MTD storage partitions.
- Focus on today's best solution, UBI and UBIFS: preparing, flashing and using UBI images.

Note: as the embedded hardware platform used for the labs does not have any flash-based storage, this lecture will not be illustrated with a corresponding practical lab.

| Lecture – Cross-compiling user-space libraries and applications                                                                                                                                                                                                                                                                 | Lab – Cross-compiling applications and li-<br>braries                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Configuring, cross-compiling and installing applications and libraries.</li> <li>Concept of build system, and overview of a few common build systems used by open-source projects: Makefile, <i>autotools</i>, <i>CMake, meson</i></li> <li>Overview of the common issues encountered when cross-compiling.</li> </ul> | <ul> <li>Manual cross-compilation of several open-<br/>source libraries and applications for an em-<br/>bedded platform.</li> <li>Learning about common pitfalls and issues,<br/>and their solutions.</li> <li>This includes compiling <i>alsa-utils</i> package,<br/>and using its speaker-test program to<br/>test that audio works on the target.</li> </ul> |
|                                                                                                                                                                                                                                                                                                                                 | Using the embedded hardware platform                                                                                                                                                                                                                                                                                                                            |



## Lecture - Embedded system building tools

- Approaches for building embedded Linux systems: build systems and binary distributions
- Principle of *build systems*, overview of Yocto Project/OpenEmbedded and Build-root.
- Principle of *binary distributions* and useful tools, focus on Debian/Ubuntu
- Specialized software frameworks/distributions: Tizen, AGL, Android

#### Lab - System build with Buildroot

- Using Buildroot to rebuild the same basic system plus a sound playing server (*MPD*) and a client to control it (*mpc*).
- Driving music playback, directly from the target, and then remotely through an MPD client on the host machine.
- Analyzing dependencies between packages.

Using the embedded hardware platform

## Lecture - Open source licenses and compliance

- Presentation of the most important open-source licenses: GPL, LGPL, MIT, BSD, Apache, etc.
- Concept of *copyleft* licenses
- Differences between (L)GPL version 2 and 3
- Compliance with open-source licenses: best practices

## Lecture - Overview of major embedded Linux software stacks

- systemd as an *init* system
- Hardware management with *udev*
- Inter-process communication with *D-Bus*
- The graphics software stack: DRM/KMS, X.org, Wayland, Qt, Gtk, OpenGL
- The multimedia software stack: Video4Linux, GStreamer, Pulseaudio, Pipewire



## Lab - Integration of additional software stacks

- Integration of *systemd* as an init system
- Use *udev* built in *systemd* for automatic module loading

Using the embedded hardware platform

| Lecture - Application development and debug-<br>ging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lab – Application development and debugging                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Programming languages and libraries available.</li> <li>Build system for your application, an overview of <i>CMake</i> and <i>meson</i></li> <li>The <i>gdb</i> debugger: remote debugging with the system of the system o</li></ul> | <ul> <li>Creating an application that uses an I2C-connected joystick to control an audio player.</li> <li>Setting up an IDE to develop and remotely debug an application.</li> </ul> |
| gdbserver, post-mortem debugging with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Using strace, ltrace, gdbserver and perf to</li> </ul>                                                                                                                      |

• Using *strace*, *ltrace*, *gdbserver* and *perf* to debug/investigate buggy applications on the embedded board.

Using the embedded hardware platform

## Lecture - Useful resources

core files

· Books about embedded Linux and system programming

• Performance analysis, tracing and profil-

ltrace, perf, valgrind

ing tools, memory checkers: strace,

- Useful online resources
- International conferences