
Embedded Linux system development training
On-line seminar, 7 sessions of 4 hours

Latest update: March 18, 2024

Title Embedded Linux system development training

Training objectives • Be able to understand the overall architecture of Embedded Linux sys-
tems.

• Be able to choose, build, setup and use a cross-compilation toolchain.
• Be able to understand the booting sequence of an embedded Linux
system, and to set up and use the U-Boot bootloader.

• Be able to select a Linux kernel version, to configure, build and install
the Linux kernel on an embedded system.

• Be able to create from scratch a Linux root filesystem, including all
its elements: directories, applications, configuration files, libraries.

• Be able to choose and setup the main Linux filesystems for block and
flash storage devices, and understand their main characteristics.

• Be able to interact with hardware devices, configure the kernel with
appropriate drivers and extend the Device Tree

• Be able to select, cross-compile and integrate open-source software
components (libraries, applications) in an Embedded Linux system,
and to handle license compliance.

• Be able to setup and use an embedded Linux build system, to build a
complete system for an embedded platform.

• Be able to develop and debug applications on an embedded Linux sys-
tem.

Duration Seven half days - 28 hours (4 hours per half day)

Pedagogics • Lectures delivered by the trainer, over video-conference. Participants
can ask questions at any time.

• Practical demonstrations done by the trainer, based on practical labs,
over video-conference. Participants can ask questions at any time.
Optionally, participants who have access to the hardware accessories
can reproduce the practical labs by themselves.

• Instant messaging for questions between sessions (replies under 24h,
outside of week-ends and bank holidays).

• Electronic copies of presentations, lab instruc-
tions and data files. They are freely available at
https://bootlin.com/doc/training/embedded-linux.

Trainer One of the engineers listed on:
https://bootlin.com/training/trainers/

https://bootlin.com/doc/training/embedded-linux
https://bootlin.com/training/trainers/


Language Oral lectures: English, French, Italian.
Materials: English.

Audience People developing devices using the Linux kernel
People supporting embedded Linux system developers.

Prerequisites
• Knowledge and practice of UNIX or GNU/Linux commands:
participants must be familiar with the Linux command line. Par-
ticipants lacking experience on this topic should get trained by
themselves, for example with our freely available on-line slides at
bootlin.com/blog/command-line/.

• Minimal English language level: B1, according to the Common
European Framework of References for Languages, for our ses-
sions in English. See bootlin.com/pub/training/cefr-grid.pdf for self-
evaluation.

Required equipment
• Computer with the operating system of your choice, with the Google
Chrome or Chromium browser for videoconferencing.

• Webcam and microphone (preferably from an audio headset)
• High speed access to the Internet

Certificate Only the participants who have attended all training sessions, and who have
scored over 50% of correct answers at the final evaluation will receive a
training certificate from Bootlin.

Disabilities Participants with disabilities who have special needs are invited to contact
us at training@bootlin.com to discuss adaptations to the training course.

https://bootlin.com/blog/command-line/
https://bootlin.com/pub/training/cefr-grid.pdf


Hardware platform for practical demos, option
#1

One of these Discovery Kits from STMi-
croelectronics: STM32MP157A-DK1,
STM32MP157D-DK1, STM32MP157C-DK2
or STM32MP157F-DK2

• STM32MP157, dual Cortex-A7 processor
from STMicroelectronics

• USB powered
• 512 MB DDR3L RAM
• Gigabit Ethernet port
• 4 USB 2.0 host ports
• 1 USB-C OTG port
• 1 Micro SD slot
• On-board ST-LINK/V2-1 debugger
• Arduino compatible headers
• Audio codec, buttons, LEDs
• LCD touchscreen (DK2 kits only)

Hardware platform for practical demos, option
#2

BeagleBone Black or BeagleBone Black Wire-
less board

• An ARM AM335x (single Cortex-A8) pro-
cessor from Texas Instruments

• USB powered
• 512 MB of RAM
• 2 or 4 GB of on-board eMMC storage
• USB host and device
• HDMI output
• 2 x 46 pins headers, to access UARTs, SPI
buses, I2C buses and more.

• Ethernet or WiFi



Hardware platform for practical labs, option
#3

BeaglePlay board
• Texas Instruments AM625x (4xARM
Cortex-A53 CPU)

• SoC with 3D acceleration, integrated MCU
and many other peripherals.

• 2 GB of RAM
• 16 GB of on-board eMMC storage
• USB host and USB device, microSD,
HDMI

• 2.4 and 5 GHz WiFi, Bluetooth and also
Ethernet

• 1 MicroBus Header (SPI, I2C, UART, ...),
OLDI and CSI connector.

Half day 1

Lecture - Introduction to embedded Linux

• Advantages of Linux versus traditional embedded operating systems.
• Typical hardware platforms used to run embedded Linux systems.
• Overall architecture of embedded Linux systems: overview of the major software components.
• Development environment for Embedded Linux development.

Lecture - Cross-compiling toolchain and C li-
brary

Lab - Cross compiling toolchain

• What’s inside a cross-compiling toolchain
• Choosing the target C library
• What’s inside the C library
• Ready to use cross-compiling toolchains
• Building a cross-compiling toolchain with
automated tools.

• Getting and configuring Crosstool-NG
• Executing it to build a custom cross-
compilation toolchain

• Exploring the contents of the toolchain



Lecture - Boot process, firmware, bootloaders

• Booting process of embedded platforms, focus on the x86 and ARM architectures
• Boot process and bootloaders on x86 platforms (legacy and UEFI)
• Boot process on ARM platforms: ROM code, bootloaders, ARM Trusted Firmware
• Focus on U-Boot: configuration, installation, and usage.
• U-Boot commands, U-Boot environment, U-Boot scripts, U-Boot generic distro boot mechanism

Half day 2

Lab - Bootloader and U-boot

• Set up serial communication with the board.
• Configure, compile and install U-Boot for the target hardware.
• Only on STM32MP1: configure, compile and install Trusted Firmware-A
• Become familiar with U-Boot environment and commands.
• Set up TFTP communication with the board. Use TFTP U-Boot commands.

Using the embedded hardware platform.

Lecture - Linux kernel Lab - Fetching Linux kernel sources

• Role and general architecture of the Linux
kernel

• Separation between kernel and user-space,
and interfaces between user-space and the
Linux kernel

• Understanding Linux kernel versions:
choosing between vendor-provided kernel
and upstream kernel, Long Term Support
versions

• Getting the Linux kernel source code

• Clone the mainline Linux tree
• Accessing stable releases



Lecture - Configuring, compiling and booting
the Linux kernel

Lab - Kernel cross-compiling and booting

• Configuring the Linux kernel: ready-made
configuration files, configuration interfaces

• Concept of Device Tree
• Cross-compiling the Linux kernel
• Study of the generated files and their role
• Installing and booting the Linux kernel
• The Linux kernel command line

• Configuring the Linux kernel and cross-
compiling it for the embedded hardware
platform.

• Downloading your kernel on the board
through U-boot’s TFTP client.

• Booting your kernel.
• Automating the kernel boot process with U-
Boot scripts.

Using the embedded hardware platform

Half day 3

Lecture – Root filesystem in Linux Lecture - BusyBox

• Filesystems in Linux.
• Role and organization of the root filesys-
tem.

• Location of the root filesystem: on storage,
in memory, from the network.

• Device files, virtual filesystems.
• Contents of a typical root filesystem.

• Detailed overview. Detailed features.
• Configuration, compiling and deploying.

Lab – Tiny root filesystem built from scratch with BusyBox

• Setting up a kernel to boot your system on a workstation directory exported by NFS
• Passing kernel command line parameters to boot on NFS
• Creating the full root filesystem from scratch. Populating it with BusyBox based utilities.
• System startup using BusyBox init
• Using the BusyBox HTTP server.
• Controlling the target from a web browser on the PC host.
• Setting up shared libraries on the target and compiling a sample executable.

Using the embedded hardware platform



Half day 4

Lecture - Accessing hardware devices Lab - Accessing hardware devices

• How to access hardware on popular busses:
USB, SPI, I2C, PCI

• Usage of kernel drivers and direct user-
space access

• TheDevice Tree syntax, and how to use it to
describe additional devices and pin-muxing

• Finding Linux kernel drivers for specific
hardware devices

• Using kernel modules
• Hardware access using /dev and /sys
• User-space interfaces for the most common
hardware devices: storage, network, GPIO,
LEDs, audio, graphics, video

• Exploring the contents of /dev and /sys
and the devices available on the embedded
hardware platform.

• Using GPIOs and LEDs.
• Modifying the Device Tree to control
pin multiplexing and to declare an I2C-
connected joystick.

• Adding support for a USB audio card using
Linux kernel modules

• Adding support for the I2C-connected joy-
stick through an out-of-tree module.

Using the embedded hardware platform

Lecture - Block filesystems Lab - Block filesystems

• Accessing and partitioning block devices.
• Filesystems for block devices.
• Usefulness of journaled filesystems.
• Read-only block filesystems.
• RAM filesystems.
• How to create each of these filesystems.
• Suggestions for embedded systems.

• Creating partitions on your SD card
• Booting a system with a mix of filesystems:
SquashFS for the root filesystem, ext4 for
system data, and tmpfs for temporary sys-
tem files.

Using the embedded hardware platform



Half day 5

Lecture - Flash filesystems

• The Memory Technology Devices (MTD) filesystem.
• Filesystems for MTD storage: JFFS2, Yaffs2, UBIFS.
• Kernel configuration options
• MTD storage partitions.
• Focus on today’s best solution, UBI and UBIFS: preparing, flashing and using UBI images.

Note: as the embedded hardware platform used for the labs does not have any flash-based storage, this
lecture will not be illustrated with a corresponding practical lab.

Lecture – Cross-compiling user-space libraries
and applications

Lab – Cross-compiling applications and li-
braries

• Configuring, cross-compiling and installing
applications and libraries.

• Concept of build system, and overview
of a few common build systems used by
open-source projects: Makefile, autotools,
CMake, meson

• Overview of the common issues encoun-
tered when cross-compiling.

• Manual cross-compilation of several open-
source libraries and applications for an em-
bedded platform.

• Learning about common pitfalls and issues,
and their solutions.

• This includes compiling alsa-utils package,
and using its speaker-test program to
test that audio works on the target.

Using the embedded hardware platform



Half day 6

Lecture - Embedded system building tools Lab - System build with Buildroot

• Approaches for building embedded Linux
systems: build systems and binary distribu-
tions

• Principle of build systems, overview of
Yocto Project/OpenEmbedded and Build-
root.

• Principle of binary distributions and useful
tools, focus on Debian/Ubuntu

• Specialized software frame-
works/distributions: Tizen, AGL, Android

• Using Buildroot to rebuild the same basic
system plus a sound playing server (MPD)
and a client to control it (mpc).

• Driving music playback, directly from the
target, and then remotely through an MPD
client on the host machine.

• Analyzing dependencies between packages.

Using the embedded hardware platform

Lecture - Open source licenses and compliance

• Presentation of the most important open-source licenses: GPL, LGPL, MIT, BSD, Apache, etc.
• Concept of copyleft licenses
• Differences between (L)GPL version 2 and 3
• Compliance with open-source licenses: best practices

Lecture - Overview of major embedded Linux software stacks

• systemd as an init system
• Hardware management with udev
• Inter-process communication with D-Bus
• The graphics software stack: DRM/KMS, X.org, Wayland, Qt, Gtk, OpenGL
• The multimedia software stack: Video4Linux, GStreamer, Pulseaudio, Pipewire



Half day 7

Lab - Integration of additional software stacks

• Integration of systemd as an init system
• Use udev built in systemd for automatic module loading

Using the embedded hardware platform

Lecture - Application development and debug-
ging

Lab – Application development and debugging

• Programming languages and libraries avail-
able.

• Build system for your application, an
overview of CMake and meson

• The gdb debugger: remote debugging with
gdbserver, post-mortem debugging with
core files

• Performance analysis, tracing and profil-
ing tools, memory checkers: strace,
ltrace, perf, valgrind

• Creating an application that uses an I2C-
connected joystick to control an audio
player.

• Setting up an IDE to develop and remotely
debug an application.

• Using strace, ltrace, gdbserver and perf to
debug/investigate buggy applications on the
embedded board.

Using the embedded hardware platform

Lecture - Useful resources

• Books about embedded Linux and system programming
• Useful online resources
• International conferences


