
Séminaire
« Linux et le temps réel »

5 mai 2010

animé par
Thomas Petazzoni, Bootlin

https://bootlin.com

organisé par
Captronic en collaboration avec le Pôle Aerospace

Valley et Midi Pyrénées Innovation

https://bootlin.com/

1

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Linux and real-time

Linux and real-
time

Michael Opdenacker
Thomas Petazzoni

Bootlin

© Copyright 2004-2010, Bootlin.
Creative Commons BY-SA 3.0 license
Latest update: Jul 27, 2018,
Document sources, updates and translations:
https://bootlin.com/doc/training/embedded-linux/
Corrections, suggestions, contributions and translations are welcome!

https://bootlin.com/doc/training/embedded-linux/

2

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Bootlin (1)

Embedded Linux experts

Expertise in the low-level Linux stack : bootloader, kernel, libraries,
applications

Founded in 2004

Strong link with the open-source community

Located in Nice and Toulouse

Development services

Kernel development and drivers : BSP development, porting
existing BSP to recent kernel versions, mainstreaming, etc.

Embedded Linux system integration : building root filesystems,
integration of useful open-source components for your system

System optimization : boot time, power management, etc.

Open source components customization

3

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Bootlin (2)

Partner with Calao Systems for hardware development

AT91 and OMAP expertise

Training services

Embedded Linux system development course (5 days)

Linux kernel driver development course (5 days)

On-site and public training sessions

All materials freely published online

Customers: Texas Instruments, Windriver, Motorola, Freescale,
Alstom, Nokia Siemens Networks, Ikusi, CS, Chess, Logiplus,
etc.

https://bootlin.com/

https://bootlin.com/

4

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Thomas Petazzoni

At Bootlin since 2008

Embedded Linux development: power management projects, boot
time optimizations projects, system integration projects, etc.

More than 100 days of training around the world.

Open-source contributions

Major contributor to Buildroot, an embedded Linux build system

Contributions to the Linux kernel, Qemu, U-Boot, etc.

In the past, 3.5 years experience with the Linux kernel: storage
virtualization driver and port to a MIPS platform

10+ years Linux user and developer.

5

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Agenda : morning

Embedded Linux : introduction

Linux and real-time : history, issues and solutions

Focus on PREEMPT_RT

How it works

How to set it up

How to develop applications for PREEMPT_RT

Focus on Xenomai

How it works

How to set it up

How to develop applications for PREEMPT_RT

6

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Agenda : afternoon

Pratical experimentations with boards
based on the ARM Atmel
AT91SAM9263 processor, clocked at
180 Mhz, 64 MB RAM

Test scheduling latencies with a normal
Linux kernel

Set up the PREEMPT_RT solution

Test scheduling latencies with
PREEMPT_RT

Set up the Xenomai solution

Test scheduling latencies with Xenomai

7

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Linux and real-time

8

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Embedded Linux

The Free Software and Open Source world offers a broad
range of tools to develop embedded systems.

Advantages

Reuse of existing components for the base system.
Allows to focus on the added value of the product.

High quality, proven components (Linux kernel, C libraries...)

Complete control on the choice of components.
Modifications possible without external constraints.

Community support: tutorials, mailing lists...

Low cost, in particular no per-unit royalties.

Potentially less legal issues.

Easier access to software and tools.

9

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Embedded Linux and real time

Due to its advantages, Linux and the open-source softwares are
more and more commonly used in embedded applications

However, some applications also have real-time constraints

They, at the same time, want to

Get all the nice advantages of Linux : hardware support,
components re-use, low cost, etc.

Get their real-time constraints met

?

10

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Embedded Linux and real time

Linux is an operating system part of the large Unix family

It was originally designed as a time-sharing system

The main goal is to get the best throughput from the available
hardware, by making the best possible usage of resources (CPU,
memory, I/O)

Time determinism is not taken into account

On the opposite, real-time constraints imply time determinism,
even at the expense of lower global throughput

Best throughput and time determinism are contradictory
requirements

11

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Global architecture of a Linux system

Linux kernel

C library

Library Library Library

Application Application

Userspace

Kernel

12

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Linux and real-time approaches

Over time, two major approaches have been taken to bring real-
time requirements into Linux

Approach 1

Improve the Linux kernel itself so that it matches real-time
requirements, by providing bounded latencies, real-time APIs, etc.

Approach taken by the PREEMPT_RT project.

Approach 2

Add a layer below the Linux kernel that will handle all the real-time
requirements, so that the behaviour of Linux doesn't affect real-time
tasks.

Approach taken by Xenomai, RTAI and RTLinux.

13

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Approach 1
PREEMPT_RT

14

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Understanding latency

When developing real-time applications with a system such as
Linux, the typical scenario is the following

An event from the physical world happens and gets notified to the
CPU by means of an interrupt

The interrupt handler recognizes and handles the event, and then
wake-up the user-space task that will react to this event

Some time later, the user-space task will run and be able to react to
the physical world event

Real-time is about providing guaranteed worst case latencies for
this reaction time, called latency

Something not very important...
Your important
real-time task !

Interrupt ! ?

15

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Linux kernel latency components

Waiting
task

interrupt
latency

Interrupt
handler Scheduler

Running task

Interrupt

Scheduling latency

scheduler
latency

scheduler
duration

Process
context

Interrupt
context

Makes the
task runnable

kernel latency = interrupt latency + handler duration
+ scheduler latency + scheduler duration

handler
duration

16

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Interrupt latency

Waiting
task

interrupt
latency

Interrupt
handler Scheduler

Running task

Interrupt

handler
duration

scheduler
latency

scheduler
duration

Makes the
task runnable

Time elapsed before executing the interrupt handler

Scheduling latency

17

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Source of interrupt latency

One of the concurrency prevention mechanism used in the kernel
is the spinlock

It has several variants, but one of the variant commonly used to
prevent concurrent accesses between a process context and an
interrupt context works by disabling interrupts

Critical sections protected by spinlocks, or other section in which
interrupts are explictly disabled will delay the beginning of the
execution of the interrupt handler

The duration of these critical sections is unbounded

Other possible source: shared interrupts

Kernel
code

Critical section
protected by spinlock

Interrupt
handler

Interrupt ?

18

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Interrupt handler duration

Waiting
task

interrupt
latency

Interrupt
handler Scheduler

Running task

Interrupt

handler
duration

scheduler
latency

scheduler
duration

Makes the
task runnable

Time taken to execute the interrupt handler

Scheduling latency

19

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Interrupt handler implementation

In Linux, many interrupt handlers are split in two parts

A top-half, started by the CPU as soon as interrupt are
enabled. It runs with the interrupt line disabled and is
supposed to complete as quickly as possible.

A bottom-half, scheduled by the top-half, which starts after all
pending top-half have completed their execution.

Therefore, for real-time critical interrupts, bottom-half
shouldn't be used: their execution is delayed by all other
interrupts in the system.

Top half

Interrupt ACK Exit

Bottom half

Schedule
bottom
half

Other interrupt
handlers...

Handle
device
data...

Wake up
waiting
tasks

User space...

20

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Scheduler latency

Waiting
task

interrupt
latency

Interrupt
handler Scheduler

Running task

Interrupt

handler
duration

scheduler
latency

scheduler
duration

Makes the
task runnable

Time elapsed before executing the scheduler

Scheduling latency

21

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Understanding preemption (1)

The Linux kernel is a preemptive operating system

When a task runs in user-space mode and gets interrupted by an
interruption, if the interrupt handler wakes up another task, this
task can be scheduled as soon as we return from the interrupt
handler.

Task A
(running in user mode)

Interrupt handler
Wakes up Task B

Task B
(running in user mode)

Interrupt

22

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Understanding preemption (2)

However, when the interrupt comes while the task is executing a
system call, this system call has to finish before another task can
be scheduled.

By default, the Linux kernel does not do kernel preemption.

This means that the time before which the scheduler will be
called to schedule another task is unbounded.

Task A
(user mode)

Interrupt handler
Wakes up Task B

Task B
(user mode)

System call

Task A
(kernel mode)

Task A
(kernel mode)

Interrupt

?
Return from syscall

23

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Scheduler duration

Waiting
task

interrupt
latency

Interrupt
handler Scheduler

Running task

Interrupt

handler
duration

scheduler
latency

scheduler
duration

Makes the
task runnable

Time taken to execute the scheduler
and switch to the new task.

Scheduling latency

24

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Other non-deterministic mechanisms

Outside of the critical path detailed previously, other non-
deterministic mechanisms of Linux can affect the execution time
of real-time tasks

Linux is highly based on virtual memory, as provided by an MMU,
so that memory is allocated on demand. Whenever an application
accesses code or data for the first time, it is loaded on demand,
which can creates huge delays.

Many C library services or kernel services are not designed with
real-time constraints in mind.

25

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Issue: priority inversion

A process with more priority can preempt a process holding the lock.
The top priority process could wait for a very long time.

Acquires
a lock

Priority

Time

preempted

Tries to get
the same

lock
waits

26

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Issue: interrupt inversion

Even your top priority task can be “preempted” by any interrupt
handler, even for interrupts feeding tasks with lower priority.

top priority task

Any interrupt

top priority task

Any interrupt...

27

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

The PREEMPT_RT project

Long-term project lead by Linux kernel developers Ingo Molnar,
Thomas Gleixner and Steven Rostedt

https://rt.wiki.kernel.org

The goal is to gradually improve the Linux kernel regarding real-
time requirements and to get these improvements merged into
the mainline kernel

PREEMPT_RT development works very closely with the mainline
development

Many of the improvements designed, developed and debugged
inside PREEMPT_RT over the years are now part of the mainline
Linux kernel

The project is a long-term branch of the Linux kernel that ultimately
should disappear as everything will have been merged

https://rt.wiki.kernel.org/

28

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Improvements in the mainline kernel

Coming from the
PREEMPT_RT project

Since the beginning of 2.6

O(1) scheduler

Kernel preemption

Better POSIX real-time API
support

Since 2.6.18

Priority inheritance support
for mutexes

Since 2.6.21

High-resolution timers

Since 2.6.30

Threaded interrupts

Since 2.6.33

Spinlock annotations

29

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

New preemption options in Linux 2.6

2 new preemption models offered by standard Linux 2.6:

30

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

1st option: no forced preemption

CONFIG_PREEMPT_NONE
Kernel code (interrupts, exceptions, system calls) never preempted.
Default behavior in standard kernels.

Best for systems making intense computations,
on which overall throughput is key.

Best to reduce task switching to maximize CPU and cache usage
(by reducing context switching).

Still benefits from some Linux 2.6 improvements:
O(1) scheduler, increased multiprocessor safety (work on RT
preemption was useful to identify hard to find SMP bugs).

Can also benefit from a lower timer frequency
(100 Hz instead of 250 or 1000).

31

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

2nd option: voluntary kernel preemption

CONFIG_PREEMPT_VOLUNTARY
Kernel code can preempt itself

Typically for desktop systems, for quicker application reaction to
user input.

Adds explicit rescheduling points throughout kernel code.

Minor impact on throughput.

32

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

3rd option: preemptible kernel

CONFIG_PREEMPT
Most kernel code can be involuntarily preempted at any time.
When a process becomes runnable, no more need to wait for
kernel code (typically a system call) to return before running the
scheduler.

Exception: kernel critical sections (holding spinlocks), but a
rescheduling point occurs when exiting the outer critical section,
in case a preemption opportunity would have been signaled while
in the critical section.

Typically for desktop or embedded systems with latency
requirements in the milliseconds range.

Still a relatively minor impact on throughput.

33

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Priority inheritance

One classical solution to the priority inversion problem is called
priority inheritance

The idea is that when a task of a low priority holds a lock requested
by an higher priority task, the priority of the first task gets temporarly
raised to the priority of the second task : it has inherited its priority.

In Linux, since 2.6.18, mutexes support priority inheritance

In userspace, priority inheritance must be explictly enabled on a
per-mutex basis.

34

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

High resolution timers

The resolution of the timers used to be bound to the resolution of
the regular system tick

Usually 100 Hz or 250 Hz, depending on the architecture and the
configuration

A resolution of only 10 ms or 4 ms.

Increasing the regular system tick frequency is not an option as it
would consume too much resources

The high-resolution timers infrastructure, merged in 2.6.21,
allows to use the available hardware timers to program interrupts
at the right moment.

Hardware timers are multiplexed, so that a single hardware timer is
sufficient to handle a large number of software-programmed timers.

Usable directly from user-space using the usual timer APIs

35

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Threaded interrupts

To solve the interrupt inversion problem, PREEMPT_RT has
introduced the concept of threaded interrupts

The interrupt handlers run in normal kernel threads, so that the
priorities of the different interrupt handlers can be configured

The real interrupt handler, as executed by the CPU, is only in
charge of masking the interrupt and waking-up the corresponding
thread

The idea of threaded interrupts also allows to use sleeping
spinlocks (see later)

Merged since 2.6.30, the conversion of interrupt handlers to
threaded interrupts is not automatic : drivers must be modified

In PREEMPT_RT, all interrupt handlers are switched to threaded
interrupts

36

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

PREEMPT_RT specifics

37

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

CONFIG_PREEMPT_RT (1)

The PREEMPT_RT patch adds a new « level » of preemption,
called CONFIG_PREEMPT_RT

This level of preemption replaces all kernel spinlocks by mutexes
(or so-called sleeping spinlocks)

Instead of providing mutual exclusion by disabling interrupts and
preemption, they are just normal locks : when contention happens,
the process is blocked and another one is selected by the scheduler

Works well with threaded interrupts, since threads can block, while
usual interrupt handlers could not

Some core, carefully controlled, kernel spinlocks remain as normal
spinlocks

38

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

CONFIG_PREEMPT_RT (2)

With CONFIG_PREEMPT_RT, virtually all kernel code becomes
preemptible

An interrupt can occur at any time, when returning from the interrupt
handler, the woken up process can start immediately

This is the last big part of PREEMPT_RT that isn't fully in the
mainline kernel yet

Part of it has been merged in 2.6.33 : the spinlock annotations. The
spinlocks that must remain as spinning spinlocks are now
differentiated from spinlocks that can be converted to sleeping
spinlocks. This has reduced a lot the PREEMPT_RT patch size !

39

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Threaded interrupts

The mechanism of threaded interrupts in PREEMPT_RT is still
different from the one merged in mainline

In PREEMPT_RT, all interrupt handlers are unconditionally
converted to threaded interrupts.

This is a temporary solution, until interesting drivers in mainline
get gradually converted to the new threaded interrupt API that
has been merged in 2.6.30.

40

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Setting up PREEMPT_RT

41

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

PREEMPT_RT setup (1)

PREEMPT_RT is delivered as a patch against the mainline
kernel

Best to have a board supported by the mainline kernel, otherwise
the PREEMPT_RT patch may not apply and may require some
adaptations

Many official kernel releases are supported, but not all. For
example, 2.6.31 and 2.6.33 are supported, but not 2.6.32.

Quick set up

Download and extract mainline kernel

Download the corresponding PREEMPT_RT patch

Apply it to the mainline kernel tree

42

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

PREEMPT_RT setup (2)

In the kernel configuration, be sure to enable

CONFIG_PREEMPT_RT

High-resolution timers

Compile your kernel, and boot

You are now running the real-time Linux kernel

Of course, some system configuration remains to be done, in
particular setting appropriate priorities to the interrupt threads,
which depend on your application.

43

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Real-time application development

44

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Development and compilation

No special library is needed, the POSIX realtime API is part of
the standard C library

The glibc or eglibc C libraries are recommended, as the support
of some real-time features is not available yet in uClibc

Priority inheritance mutexes or NPTL on some architectures, for
example

Compile a program

ARCH-linux-gcc -o myprog myprog.c -lrt

To get the documentation of the POSIX API

Install the manpages-posix-dev package

Run man functioname

45

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Process, thread ?

Confusion about the terms «process», «thread» and «task»

In Unix, a process is created using fork() and is composed of

An address space, which contains the program code, data, stack,
shared libraries, etc.

One thread, that starts executing the main() function.

Upon creation, a process contains one thread

Additional threads can be created inside an existing process,
using pthread_create()

They run in the same address space as the initial thread of the
process

They start executing a function passed as argument to
pthread_create()

46

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Process, thread: kernel point of view

The kernel represents each thread running in the system by a
structure of type task_struct

From a scheduling point of view, it makes no difference between
the initial thread of a process and all additional threads created
dynamically using pthread_create()

Address space

Thread
A

Process after fork()

Address space

Thread
A

Thread
B

Same process after pthread_create()

47

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Creating threads

Linux support the POSIX thread API

To create a new thread

pthread_create(pthread_t *thread,
pthread_attr_t *attr,
void *(*routine)(*void*),
void *arg);

The new thread will run in the same address space, but will be
scheduled independently

Exiting from a thread

pthread_exit(void *value_ptr);

Waiting for a thread termination

pthread_join(pthread_t *thread, void **value_ptr);

48

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Scheduling classes (1)

The Linux kernel scheduler support different scheduling classes

The default class, in which processes are started by default is a
time-sharing class

All processes, regardless of their priority, get some CPU time

The proportion of CPU time they get is dynamic and affected by the
nice value, which ranges from -20 (highest) to 19 (lowest). Can be
set using the nice or renice commands

The real-time classes SCHED_FIFO and SCHED_RR

The highest priority process gets all the CPU time, until it blocks.

In SCHED_RR, round-robin scheduling between the processes of
the same priority. All must block before lower priority processes get
CPU time.

Priorities ranging from 0 (lowest) to 99 (highest)

49

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Scheduling classes (2)

Before creating a thread :

Then the thread can be created using pthread_create(),
passing the attr structure.

Several other attributes can be defined this way: stack size, etc.

struct sched_param parm;
pthread_attr_t attr;

pthread_attr_init(&attr);
pthread_attr_setinheritsched(&attr,

PTHREAD_EXPLICIT_SCHED);
pthread_attr_setschedpolicy(&attr, SCHED_FIFO);
parm.sched_priority = 42;
pthread_attr_setschedparam(&attr, &parm);

50

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Memory locking

In order to solve the non-determinism introduced by virtual
memory, memory can be locked

Guarantee that the system will keep it allocated

Guarantee that the system has pre-loaded everything into memory

mlockall(MCL_CURRENT | MCL_FUTURE);

Locks all the memory of the current address space, for currently
mapped pages and pages mapped in the future

Other, less useful parts of the API: munlockall, mock,
munlock.

Watch out for non-currently mapped pages

Stack pages

Dynamically-allocated memory

51

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Mutexes

Allows mutual exclusion between two threads in the same
address space

Initialization/destruction
pthread_mutex_init(pthread_mutex_t *mutex, const
pthread_mutexattr_t *mutexattr);
pthread_mutex_destroy(pthread_mutex_t *mutex);

Lock/unlock
pthread_mutex_lock(pthread_mutex_t *mutex);
pthread_mutex_unlock(pthread_mutex_t *mutex);

Priority inheritance must explictly be activated
pthread_mutexattr_t attr;
pthread_mutexattr_init (&attr);
pthread_mutexattr_getprotocol

(&attr, PTHREAD_PRIO_INHERIT);

52

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Timers

timer_create(clockid_t clockid,
struct sigevent *evp,
timer_t *timerid)

Create a timer. clockid is usually CLOCK_MONOTONIC.
sigevent defines what happens upon timer expiration : send a
signal or start a function in a new thread. timerid is the returned
timer identifier.

timer_settime(timer_t timerid, int flags,
struct itimerspec *newvalue,
struct itimerspec *oldvalue)

Configures the timer for expiration at a given time.

timer_delete(timer_t timerid), delete a timer

clock_getres(), get the resolution of a clock

Other functions: timer_getoverrun(), timer_gettime()

53

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Signals

Signals are an asynchronous notification mechanism

Notification occurs either

By the call of a signal handler. Be careful with the limitations of
signal handlers!

By being unblocked from the sigwait(), sigtimedwait() or
sigwaitinfo() functions. Usually better.

Signal behaviour can be configured using sigaction()

Mask of blocked signals can be changed with
pthread_sigmask()

Delivery of a signal using pthread_kill() or tgkill()

All signals between SIGRTMIN and SIGRTMAX, 32 signals under
Linux.

54

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Inter-process communication

Semaphores

Usable between different processes using named semaphores

sem_open(), sem_close(), sem_unlink(), sem_init(),
sem_destroy(), sem_wait(), sem_post(), etc.

Message queues

Allows processes to exchange data in the form of messages.

mq_open(), mq_close(), mq_unlink(), mq_send(),
mq_receive(), etc.

Shared memory

Allows processes to communicate by sharing a segment of memory

shm_open(), ftruncate(), mmap(), munmap(),
close(), shm_unlink()

55

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Debugging real-time latencies

56

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

ftrace - Kernel function tracer

New infrastructure that can be used for debugging or analyzing
latencies and performance issues in the kernel.

Developed by Steven Rostedt. Merged in 2.6.27.
For earlier kernels, can be found from the rt-preempt patches.

Very well documented in Documentation/ftrace.txt

Negligible overhead when tracing is not enabled at run-time.

Can be used to trace any kernel function!

See our video of Steven's tutorial at OLS 2008:
https://bootlin.com/community/videos/conferences/

https://bootlin.com/community/videos/conferences/

57

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Using ftrace

Tracing information available through the debugfs virtual fs
(CONFIG_DEBUG_FS in the Kernel Hacking section)

Mount this filesystem as follows:
mount -t debugfs nodev /debug

When tracing is enabled (see the next slides),
tracing information is available in /debug/tracing.

Check available tracers
in /debug/tracing/available_tracers

58

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Scheduling latency tracer

CONFIG_SCHED_TRACER (Kernel Hacking section)

Maximum recorded time between waking up a top priority task
and its scheduling on a CPU, expressed in µs.

Check that wakeup is listed in
/debug/tracing/available_tracers

To select, reset and enable this tracer:
echo wakeup > /debug/tracing/current_tracer
echo 0 > /debug/tracing/tracing_max_latency
echo 1 > /debug/tracing/tracing_enabled

Let your system run, in particular real-time tasks.
Example: chrt -f 5 sleep 1

Disable tracing:
echo 0 > /debug/tracing/tracing_enabled

Read the maximum recorded latency and the corresponding trace:
cat /debug/tracing/tracing_max_latency

59

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Xenomai

60

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Linux hard real-time extensions

Three generations

RTLinux

RTAI

Xenomai

A common principle

Add a extra layer between the
hardware and the Linux kernel,
to manage real-time tasks
separately.

Hardware

Micro-kernel

Linux
kernel

real-time
tasks

real-time
tasks

61

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Xenomai project

http://www.xenomai.org/

Started in 2001 as a project aiming at emulating
traditional RTOS.

Initial goals: facilitate the porting of programs to GNU / Linux.

Initially related to the RTAI project (as the RTAI / fusion
branch), now independent.

Skins mimicking the APIs of traditional
RTOS such as VxWorks, pSOS+, and VRTXsa as well as the
POSIX API, and a “native” API.

Aims at working both as a co-kernel and on top of
PREEMPT_RT in the upcoming 3.0 branch.

Will never be merged in the mainline kernel.

http://www.xenomai.org/

62

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Xenomai architecture

Adeos I-Pipe

Xenomai RTOS
(nucleus)

VxWorks application

glibc Xenomai
libvxworks

POSIX application

glibc
Xenomai

libpthread_rt

Linux application

glibc

VFS Network

Memory ...

System calls

Linux
kernel space

Pieces added
by Xenomai

Xenomai
skins

63

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

The Adeos interrupt pipeline abstraction

From Adeos point of view, guest OSes are prioritized domains.

For each event (interrupts, exceptions, syscalls, etc...), the
various domains may handle the event or pass it down the
pipeline.

64

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Adeos virtualized interrupts disabling

Each domain may be “stalled”, meaning that it does not accept
interrupts.

Hardware interrupts
are not disabled
 however (except
 for the domain
 leading the pipeline),
 instead the interrupts
 received during that
 time are logged and
 replayed when the
 domain is unstalled.

65

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Adeos additional features

The Adeos I-pipe patch implement additional features, essential
for the implementation of the Xenomai real-time extension:

Disables on-demand mapping of kernel-space vmalloc/ioremap
areas.

Disables copy-on-write when real-time processes are forking.

Allow subscribing to event allowing to follow progress of the Linux
kernel, such as Linux system calls, context switches, process
destructions, POSIX signals, FPU faults.

On the ARM architectures, integrates the FCSE patch, which allows
to reduce the latency induced by cache flushes during context
switches.

66

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Xenomai features

Factored real-time core with skins implementing various real-time
APIs

Seemless support for hard real-time in user-space

No second-class citizen, all ports are equivalent feature-wise

Xenomai support is as much as possible independent from the
Linux kernel version (backward and forward compatible when
reasonable)

Each Xenomai branch has a stable user/kernel ABI

Timer system based on hardware high-resolution timers

Per-skin time base which may be periodic

RTDM skin allowing to write real-time drivers

67

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Xenomai user-space real-time support.

Xenomai supports real-time in user-space on 5 architectures,
including 32 and 64 bits variants.

Two modes are defined for a thread

the primary mode, where the thread is handled by Xenomai
scheduler

the secondary mode, when it is handled by Linux scheduler.

Thanks to the services of the Adeos I-pipe service, Xenomai
system calls are defined.

A thread migrates from secondary mode to primary mode when
such a system call is issued

It migrates from primary mode to secondary mode when a Linux
system call is issued, or to handle gracefully exceptional events
such as exceptions or Linux signals.

68

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Real Time Driver Model (RTDM)

An approach to unify the interfaces for developing device drivers
and associated applications under real-time Linux

An API very similar to the native Linux kernel driver API

Allows the development, in kernel space, of

Character-style device drivers

Network-style device drivers

See the whitepaper on
http://www.xenomai.org/documentation/xenomai-2.4/pdf/RTDM-and-Applications.pdf

Current notable RTDM based drivers:

Serial port controllers;

RTnet UDP/IP stack;

RT socket CAN, drivers for CAN controllers;

Analogy, fork of the Comedy project, drivers for acquisition cards.

http://www.xenomai.org/documentation/xenomai-2.4/pdf/RTDM-and-Applications.pdf

69

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Setting up Xenomai

70

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

How to build Xenomai

Download Xenomai sources at
http://download.gna.org/xenomai/stable/

Download one of the Linux versions supported by this release
(see ksrc/arch/<arch>/patches/)

Since version 2.0, split kernel/user building model.

Kernel uses a script called script/prepare-kernel.sh which
integrates Xenomai kernel-space support in the Linux sources.

Run the kernel configuration menu.

http://download.gna.org/xenomai/stable/

71

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Linux options for Xenomai configuration

72

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Xenomai user-space support

User-space libraries are compiled using the traditional autotools

./configure --target=arm-linux && make &&
make DESTDIR=/your/rootfs/ install

The xeno-config script, installed when installing Xenomai user-
space support helps you compiling your own programs.

See Xenomai's examples directory.

Installation details may be found in the README.INSTALL guide.

For an introduction on programming with the native API, see:
http://www.xenomai.org/documentation/branches/v2.3.x/pdf/Native-API-Tour-rev-C.pdf

For an introduction on programming with the POSIX API, see:
http://www.xenomai.org/index.php/Porting_POSIX_applications_to_Xenomai

http://www.xenomai.org/documentation/branches/v2.3.x/pdf/Native-API-Tour-rev-C.pdf
http://www.xenomai.org/index.php/Porting_POSIX_applications_to_Xenomai

73

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Developing applications on Xenomai

74

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

The POSIX skin

The POSIX skin allows to recompile without changes a traditional
POSIX application so that instead of using Linux real-time
services, it uses Xenomai services

Clocks and timers, condition variables, message queues, mutexes,
semaphores, shared memory, signals, thread management

Good for existing code or programmers familiar with the POSIX API

Of course, if the application uses any Linux service that isn't
available in Xenomai, it will switch back to secondary mode

To link an application against the POSIX skin

DESTDIR=/path/to/xenomai/
export DESTDIR
CFL=`$DESTDIR/bin/xeno-config --posix-cflags`
LDF=`$DESTDIR/bin/xeno-config --posix-ldflags`
ARCH-gcc $CFL -o rttest rttest.c $LDF

75

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Communication with a normal task

If a Xenomai real-time application using the POSIX skin wishes to
communicate with a separate non-real-time application, it must
use the rtipc mechanism

In the Xenomai application, create an IPCPROTO_XDDP socket
socket(AF_RTIPC, SOCK_DGRAM, IPCPROTO_XDDP);
setsockopt(s, SOL_RTIPC, XDDP_SETLOCALPOOL,&poolsz,
sizeof(poolsz));
memset(&saddr, 0, sizeof(saddr));
saddr.sipc_family = AF_RTIPC;
saddr.sipc_port = MYAPPIDENTIFIER;
ret = bind(s, (struct sockaddr *)&saddr, sizeof(saddr));

And then the normal socket API sendto() / recvfrom()

In the Linux application

Open /dev/rtpX, where X is the XDDP port

Use read() and write()

76

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

The native API (1)

A Xenomai-specific API for developing real-time tasks

Usable both in user-space and kernel space. Development of tasks
in user-space is the preferred way.

More coherent and more flexible API than the POSIX API. Easier to
learn and understand. Certainly the way to go for new applications.

Applications should include <native/service.h>, where
service can be alarm, buffer, cond, event, heap,
intr, misc, mutex, pipe, queue, sem, task, timer

To compile applications :
DESTDIR=/path/to/xenomai/
export DESTDIR
CFL=`$DESTDIR/bin/xeno-config --xeno-cflags`
LDF=`$DESTDIR/bin/xeno-config --xeno-ldflags`
ARCH-gcc $CFL -o rttest rttest.c $LDF -lnative

77

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

The native API (2)

Task management services

rt_task_create(), rt_task_start(),
rt_task_suspend(), rt_task_resume(),
rt_task_delete(), rt_task_join(), etc.

Counting semaphore services

rt_sem_create(), rt_sem_delete(), rt_sem_p(),
rt_sem_v(), etc.

Message queue services

rt_queue_create(), rt_queue_delete(),
rt_queue_alloc(), rt_queue_free(),
rt_queue_send(), rt_queue_receive(), etc.

Mutex services

rt_mutex_create(), rt_mutex_delete(),
rt_mutex_acquire(), rt_mutex_release(), etc.

78

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

The native API (3)

Alarm services

rt_alarm_create(), rt_alarm_delete(),
rt_alarm_start(), rt_alarm_stop(),
rt_alarm_wait(), etc.

Memory heap services

Allows to share memory between processes and/or to pre-allocate
a pool of memory

rt_heap_create(), rt_heap_delete(),
rt_heap_alloc(), rt_heap_bind()

Condition variable services

rt_cond_create(), rt_cond_delete(),
rt_cond_signal(), rt_cond_broadcast(),
rt_cond_wait(), etc.

79

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Xenomai and normal task communication

Using rt_pipes

In the native Xenomai application, use the Pipe API

rt_pipe_create(), rt_pipe_delete(),
rt_pipe_receive(), rt_pipe_send(),
rt_pipe_alloc(), rt_pipe_free()

In the normal Linux application

Open the corresponding /dev/rtpX file, the minor is specified at
rt_pipe_create() time

Then, just read() and write() to the opened file

Xenomai application
Uses the rt_pipe_*() API

Linux application
open(“/dev/rtpX”)

80

Bootlin. Kernel, drivers and embedded Linux development, consulting, training and support. https://bootlin.com

Questions ?

?

Thomas Petazzoni
Bootlin, https://bootlin.com

thomas.petazzoni@bootlin.com

© 2007-2010 Bootlin, https://bootlin.com Creative Commons License© 2007-2010 Bootlin, https://bootlin.com Creative Commons License

Real-time – Testing PREEMT_RT and Xenomai

Using the Calao board

The board we are using is a Calao USB-A9263 device, which has an
ARM AT91SAM9263 CPU clocked at 180 Mhz, 64 MB of RAM and
256 MB of NAND Flash.

The board is powered by the main USB connector, which is also used
for the serial port console. It must also be connected to the
development workstation using an Ethernet cable to the provided
little USB-Ethernet adapter.

On your system, the following elements have already been
configured :

• The terminal emulator Minicom, which allows to
communicate with the board over the serial port. When the
board is plugged-in, devices /dev/ttyUSB0 and /dev/ttyUSB1
are created. /dev/ttyUSB0 is the JTAG port, that will not be
used. /dev/ttyUSB1 is the serial port. Minicom is already
configured for /dev/ttyUSB1, speed 115200, no hardware
flow control.

• A NFS server exports the directory
/home/tux/realtime/nfsroot/ to 192.168.42.2, which is the
IP address of the board. This directory contains the root
filesystem that will be used by the Linux system running on
the ARM board.

• A TFTP server is installed, and exposes the contents of /var/
lib/tftpboot/. This directory contains a uImage file, which
is pre-compiled kernel image for the board.

Once the board is plugged-in, start Minicom. You will see the
messages of the U-Boot bootloader, the messages of the Linux
kernel, and finally the login prompt. The login is “root” and the
password is empty.

Testing the default kernel

In order to test the behaviour of the kernel, we have created a
simple application in
/home/tux/realtime/nfsroot/root/rttest.c, which arms a timer,
and looks at what time the application is really woken up. It allows to
measure the latency of the system.

The kernel we have compiled is a default 2.6.29 kernel, with high-
resolution timers and no kernel preemption.

A CodeSourcery ARM toolchain has been pre-installed in /home/tux/
arm-2009q1. So, let's add this toolchain is your PATH :

export PATH=/home/tux/arm-2009q1/bin:$PATH

Then, compile the example application :

arm-none-linux-gnueabi-gcc -o rttest rttest.c -lrt

Now, do the following tests:

● Test the program with nothing special and write down the
results.

● Test your program and at the same time, add some workload

Real Time in
embedded Linux systems

Real Time in
embedded Linux systems

https://bootlin.com/
https://bootlin.com/

© 2007-2010 Bootlin, https://bootlin.com Creative Commons License© 2007-2010 Bootlin, https://bootlin.com Creative Commons License

to the board, by running doload 300 on the board, and using
netcat 192.168.0.100 5566 on your workstation when you
see the message “Listening on any address 5566” in order
to flood the network interface of the Calao board (where
192.168.0.100 is the IP address of the Calao board). A telnet
server is running on the board, so you can get several shells
on the board by running telnet 192.168.42.2. This allows
you to run the doload 300 command in one terminal, and test
application in another.

● Test your program again with the workload, but by running
the program in the SCHED_FIFO scheduling class at priority
80. To do so, you must first modify you program so that the
testing takes place in a separate thread, created by
pthread_create(). You'll have to use various functions of the
pthread API to set up the thread in the correct scheduling
class, at the correct priority.

Testing the real-time patch

The sources of the mainline 2.6.29 kernel are available in

/home/tux/files/linux-2.6.29.6.tar.bz2

The PREEMPT_RT patch for 2.6.29.6 is available in

/home/tux/files/patch-2.6.29.6-rt24.bz2

Uncompress the kernel sources :

tar xjf /home/tux/files/linux-2.6.29.6.tar.bz2

Apply the PREEMPT_RT patch :

cd linux-2.6.29.6

bzcat /home/tux/files/patch-2.6.29.6-rt24.bz2 | patch -p1

Now, let's configure the kernel with a default configuration for the
board :

make ARCH=arm usb-a9263_defconfig

Run the kernel configuration utility :

make ARCH=arm xconfig

And in the menus :

• Enable the CONFIG_PREEMPT_RT option. The kernel should
now be fully preemptible, including in critical sections, and
tasks can have higher priorities than interrupts.

• Enable the CONFIG_HIGH_RES_TIMERS option (in Kernel
features), for high resolution timers.

• Enable the CONFIG_ATMEL_TCLIB option (in Device Drivers →
Misc Devices), in order to have a clock source for the high
resolution timers.

Compile the kernel:

make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- uImage

Finally, copy the kernel to the directory exported by the TFTP server
:

sudo cp arch/arm/boot/uImage /var/lib/tftpboot/

Real Time in
embedded Linux systems

Real Time in
embedded Linux systems

https://bootlin.com/
https://bootlin.com/

© 2007-2010 Bootlin, https://bootlin.com Creative Commons License© 2007-2010 Bootlin, https://bootlin.com Creative Commons License

Reboot your board and make sure that you are really running the
new kernel.

Look at the output of the ps command : you now have threads for the
interrupts handlers (threads named [IRQ-XX]) and threads for the
bottom half handlers (threads named [sirq-xxxx]).

Repeat the tests with this real-time preemptible kernel and compare
the results.

Testing Xenomai scheduling latency

Xenomai is available in :

/home/tux/files/xenomai-2.5.2.tar.bz2

Extract the kernel sources again, in a separate directory (Xenomai
and PREEMPT_RT cannot be used at the same time).

Prepare the kernel for Xenomai compilation :

/home/tux/xenomai-2.5.2/scripts/prepare-kernel.sh –
arch=arm –linux=/home/tux/linux-2.6.29.6

Start with a default kernel configuration for the Calao board :

make ARCH=ARM usb-a9263_defconfig

Then start the kernel configuration utility :

make ARCH=arm xconfig

And enable these options :

● CONFIG_XENOMAI

● CONFIG_XENO_DRIVERS_TIMERBENCH

Other options of interest (ARM specific) are:

● CONFIG_ARM_FCSE_GUARANTEED

● CONFIG_XENO_HW_UNLOCKED_SWITCH

Compile the kernel :

make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- uImage

And put it inside the directory exported by TFTP :

sudo cp arch/arm/boot/uImage /var/lib/tftpboot

Now boot the board with the new kernel.

We have already installed the user-space of Xenomai in
/home/tux/realtime/nfsroot/. So, we can compile the same rttest.c
application for Xenomai, using its POSIX skin :

DESTDIR=/home/tux/realtime/nfsroot/
export DESTDIR
CFL=`$DESTDIR/bin/xeno-config --posix-cflags`
LDF=`$DESTDIR/bin/xeno-config --posix-ldflags`
arm-none-linux-gnueabi-gcc $CFL -o rttest rttest.c $LDF

Re-run the tests, compare the results.

Using the native Xenomai API

Now, we will start using the native Xenomai API. Your goal is to
create a program that starts a Xenomai task, using the task

Real Time in
embedded Linux systems

Real Time in
embedded Linux systems

https://bootlin.com/
https://bootlin.com/

© 2007-2010 Bootlin, https://bootlin.com Creative Commons License© 2007-2010 Bootlin, https://bootlin.com Creative Commons License

management Xenomai service. This task will loop infinitely, but will
use the Xenomai alarm API to block and be woken up at regular
intervals of 1 second. For the moment, every time the task is woken
up, just print a message using the printf() function. Note that this
is not correct from a real-time perspective: printf() is a function
that uses Linux services, therefore our task will switch in secondary
mode every time we call this function.

To compile your application :

DESTDIR=/home/tux/realtime/nfsroot/
export DESTDIR
CFL=`$DESTDIR/bin/xeno-config --xeno-cflags`
LDF=`$DESTDIR/bin/xeno-config --xeno-ldflags`
arm-none-linux-gnueabi-gcc $CFL -o xenotest xenotest.c\
-lnative $LDF

Once this application works, we will improve it to demonstrate the
usage of pipes to communicate with a non-Xenomai application. To
do so, first improve your Xenomai application so that it creates a
pipe. Then, at each iteration of the waiting loop, increment a
counter, and using the rt_pipe_write() function, write the current
value of the counter into the pipe.

Write another C application that opens /dev/rtpX, and infinitely
reads integers from this device and display them on the screen.

Real Time in
embedded Linux systems

Real Time in
embedded Linux systems

https://bootlin.com/
https://bootlin.com/

