9

ECC engines

Miquel Raynal

miquel@bootlin.com

© Copyright 2004-2020, Bootlin.
Creative Commons BY-SA 3.0 license.

Corrections, and are welcome!

bootlin

=

s oo A
B embedded Linux and kernel engineering
g RS ity o0 GRS

> Embedded Linux engineer at Bootlin
» Embedded Linux expertise
» Development, consulting and training
» Strong open-source focus
> https://bootlin.com
» Contributions
»> Maintainer of the NAND subsystem
» Co-maintainer of the MTD subsystem
» Kernel support for various ARM SoCs

» Living in Toulouse, south west of France

https://bootlin.com

9

A bit of context

Miquel Raynal

miquel@bootlin.com

© Copyright 2004-2020, Bootlin.
Creative Commons BY-SA 3.0 license.

Corrections, and ions are welcome!

bootlin

=

oo
| embedded Linux and kernel engineering
e SR~ it oo) SR

» You want to share an information

» The communication medium is subject to disturbances
» What do you do?

» In a crowd you would either...
» Speak louder?

P Uses more power in the case of telecommunications
» Would need to decrease storage media density
» Repeat yourself?
» Adds redundancy
» Introduces more latency

» Provide the original data to an algorithm

> Retrieve the (transformed) data, including check/redundancy
information

» We usually prefer to transfer readable data, so the orginal data
prepends within the code
» Longer than the data you actually want to transmit

» The point of this code being, the receiver must be able to

» Detect one or more errors
» Eventually correct one or more errors

> Not only reserved to communications

» Already widely used with storage media as well!

» Case of radio audio communications
» NATO phonetic alphabet
» Lima
» India
» November
» Uniform
> X-ray

» Probably the most widely known ECC
» All words are very different to the ears

» Mathematiciens call that the distance

> Let's take the number 0xA, b1010
» A single disturbance could produce b0010
» How do you know that 0x2 is not the right number?

» Any change leads to a (in appearance) valid number

9

P> Repeatiting may be a solution
» Send twice the same bit

» 11010 becomes b11001100
> Detection of a single bit error
» No correction

9

P> Repeatiting may be a solution
» Send twice the same bit

> 1010 becomes b11001100
> Detection of a single bit error
» No correction
» Send three times the same bit
> 1010 becomes b111000111000
» Detection of a single bit error
> Automatic correction by majority vote
> Very costly!

9

» Parity bits in UART communications

» A byte may be composed of
» 7 bits of data
> 1 parity bit

» The parity bit is selected to match either an even or an odd

parity

> Example: 0x4A (b1001010) has 3 binary 1
> If we look for an even parity, we will then append a 1
> If the message has an odd parity it is assumed to be corrupted

P 1-bit error detection is achieved with a 15% overhead

» Much less than the 100% overhead of the “repeating”
algorithm!

9

» RAM chips embed simple
hardware ECC algorithms

» Old technologies used

parity bits

» Then 1-bit correction

algorithms

» Silicon vendors tend to
move towards more
complex on-the-fly

corrections

Elixir 512MB DDR RAM M2U51264DS8HC3G-5T for desktop

computers

» Compact Disks

Are intrinsically less prone
to bit errors

Errors come from external
scratches or dust

Unlike RAMs, errors
happen in batch

Philips norm covers the
loss of up to 4096
consecutive bits (this is a
1 millimeter thick
scratch!)

oo

Flat view of a CD-R

9

NAND and

bootlin

bitflips, a love

story

Miquel Raynal

miquel@bootlin.com

© Copyright 2004-2020, Bootlin.
Creative Commons BY-SA 3.0 license.

embedded Linux and |

Corrections, and

It's cheap

It's cheap

It's intrinsically unstable

It's cheap

It's intrinsically unstable

ECC is mandatory

» NAND devices are made of a huge amount of tiny NAND cells
> A cell is like a bucket with a small hole
» An empty bucket is seen as a binary 1
> A filled bucket is seen as a binary 0
» Multiple reasons can cause a NAND cell to not return the
right data:
> Time
— remember, there is a hole in the bucket!
> Intensive use (too many erase cycles) damages the cell
— the hole gets bigger!
P> Read disturbances
— looking into a bucket shakes the other one
> Level sensing
— when do we consider the bucket full /empty?

» A more scientific explanation of the NAND technology
internals available here: conference / slides

https://www.youtube.com/watch?v=3PROYAbwCmY
https://elinux.org/images/3/3d/Raynal-understand-and-drive-your-nand.pdf

» Particularly true with newer chips

— NAND cells are smaller

— Density rises

— The probability of bit error as well (due to the inherent
disturbances)

» \We need reliable corrections that suit the chip requirements

» Stronger corrections involve:

» More processing power
» Additional delays
> A bigger overhead

» The host controller provides to the ECC engine a chunk of
data
» The ECC engine processes the chunk and produces ECC bytes

» Usually the processed data is kept identical
» The ECC bytes are stored in the out-of-band area

encoding
| Data chunk Check |

ECC step size

womse {| [7] I T T T 1
~—

in-band data out-of-band data

> Repeat this operation for all the data chunks contained in the
page
> Write the entire page to the storage medium

9

» Raw data and ECC bytes (possibly corrupted) are retrieved

Clean data
Check
Data chunk ‘
processing |_BYteS

bitflip.

woms: | [~ H I T T T 1

~—

raw (possibly corrupted) in-band data out-of-band data with check bytes

» The ECC engine processes all the available data, chunk after
chunk, to:

» Detects bit errors
» Eventually corrects them

» Return the original data to the caller and report a status

vy

Very popular with older/stronger Single Level
Cell (SLC) chips

Efficiently corrects up to 1 bit error per chunk
Detects up to 2 bit errors per chunk

Invented in 1950 to cover defects from punched
card readers!

Most of the existing raw NAND controllers
embed an hardware Hamming ECC engine Historc portrait of Richard

Linux provides a software Hamming ECC engine W Hamming

» Invented independently in 1959 by Alexis Hocquenghem and
1960 by Raj Bose and D. K. Ray-Chaudhuri
» Very powerful and flexible: fits almost any kind of (NAND)
requirement
» Adapts to almost any strength over any chunk size
» Carries the data unaltered
» Very good ratio overhead/correction capabilities
» Only limited by the available out-of-band area
» Read path almost 10 times more complex than the write path
= Better if offloaded to hardware
» But still, BCH decoding is considered as rather inexpensive
compared to its correcting capabilities
P> Leverages polynomial algebra over binary data
P> Reverse engineering session of a hardware BCH ECC engine:
https://bootlin.com/blog/supporting-a-
misbehaving-nand-ecc-engine/
» Linux also provides a customizable software BCH ECC engine

https://bootlin.com/blog/supporting-a-misbehaving-nand-ecc-engine/
https://bootlin.com/blog/supporting-a-misbehaving-nand-ecc-engine/

» Introduced in 1960 by Irving S. Reed and Gustave Solomon
» Considers symbols instead of bits
» Many bit-errors in a single symbol appear as a single failure
» Makes RS codes well suited to fight against burst errors
» Treats “lack of data” and "bit failures” differently
» Given t the number of check symbols, it can correct:

> up to t missing symbols (provided that the algorithm know
their position) or
» up to t/2 unlocated errors otherwise

» A bit less common than BCH codes in the NAND world

» Base of the CIRC ECC algorithm used for CD's (Cross
Interleaved Reed-Solomon Code)

9

ECC engines
support

Miquel Raynal

miquel@bootlin.com

© Copyright 2004-2020, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, and fons are welcome!

bootlin

s

embeddéd E'nu)c.anﬂj&g;nel engineering

b e . A

9

» How people usually see their hardware:

NAND host controller NAND device

NAND bus

9

» The real situation:

NAND host | hardware

controller JECC engine NARD elevitee

NAND bus

» Historically, raw NAND device, NAND bus, NAND controller
and ECC engine were treated by Linux as a single entity

» Recently, we separated the NAND device and the NAND
controller representations

» The raw NAND controller and its embedded hardware ECC
engine are still mixed in practice

> We recently pushed in favor of the distinction between:

» struct nand_chip *chip
» struct nand_controller *controller
» stuct nand_ecc_ctrl *ecc

https://elixir.bootlin.com/linux/latest/ident/struct nand_chip *chip
https://elixir.bootlin.com/linux/latest/ident/struct nand_controller *controller
https://elixir.bootlin.com/linux/latest/ident/stuct nand_ecc_ctrl *ecc

9

» Only “on-die” ECC engines:

hardware | SPI-NAND

SPI host controller ECC engine device

SPI bus

» Support added much more recently (v4.19)
» At this time, only on-die ECC engines were supported

> Software engines not available (yet)!
> We see new devices coming out without embedded engines

» Cheaper to manufacture?

» More powerful (for larger corrections) to offload to dedicated
hardware

» Even more when mutualizing between several chips

» SPI-NAND subsystem not ready for that

hardware

ECC engine

SPI host
controller

SPI host
controller

SPItho"st hardware
controfler fecc engine|

SPI bus

SPI bus

SPI bus

hardware

ECC engine

SPI-NAND
device

SPI-NAND
device

SPI-NAND
device

9

» What should discriminate

. /%

two englnES? * struct nand_ecc_props - NAND ECC properties
) * Q@engine_type: ECC engine type
» Common properties may be * Gplacement: O0B placement (if relevant)
. * Qalgo: ECC algorithm (if relevant)

Used to pICk the most * @strength: ECC strength

H H . * @step_size: Number of bytes per ste;
approprlate One, Ilke * @flags: Misc propertiesy ’ ’

. */
> The type of engine struct nand_ecc_props {
» The possible Strengths enum nand_ecc_engine_type engine_type;
> Th d h k enum nand_ecc_placement placement;
e su orted chun enum nand_ecc_algo algo;
. pp . unsigned int strength;
sizes (also called step size, e s SRR
or ECC size) on which the =~ useigned ine flags;

correction applies

)

» The core must tune the engine’s configuration to best fit the
engine's capabilities, the NAND part requirements, the
subsystem defaults, the user desires,...

* struct nand_ecc - Information relative to the ECC

* Q@defaults: Default values, depend on the underlying subsystem

* Q@requirements: ECC requirements from the NAND chip perspective

* Quser_conf: User desires in terms of ECC parameters

* @ctx: ECC context for the ECC engine, derived from the device @requirements
* the Quser_conf and the @defaults

* Qondie_engine: On-die ECC engine reference, if any

* Qengine: ECC engine actually bound

struct nand_ecc {
struct nand_ecc_props defaults;
struct nand_ecc_props requirements;
struct nand_ecc_props user_conf;
struct nand_ecc_context ctx;
struct nand_ecc_engine *ondie_engine;
struct nand_ecc_engine *engine;

@

» For each NAND device, the core must find the engine to be
used and tune it appropriately

nanddev_ecc_engine_init(struct nand_device *nand)
{
/* Look for the ECC engine to use */
nanddev_get_ecc_engine (nand) ;

/*
* Configure the engine:
* balance user input and chip requirements
*/

nanddev_find_ecc_configuration(nand)

nand_ecc_init_ctx(nand) ;

if (!nand_ecc_is_strong_enough(nand))
pr_warn("weak ECC...\n");

)

On die ECC engine

Software ECC engine

&spi_host {
&spi_host { flash@0 {
flash@0 { compatible = "spi-nand";
compatible = "spi-nand"; reg = <0>;
reg = <0>; nand-use-soft-ecc-engine;
nand-ecc-engine = <&flash>; nand-ecc-algo = "bch'";
}; };
}; };
External ECC engine On host ECC engine
&spi_host { &spi_host {
flash@0 { nand-ecc-engine = <&ecc_engine>;
compatible = "spi-nand"; flash@0 {
reg = <0>; compatible = "spi-nand";
nand-ecc-engine = <&ecc_engine>; reg = <0>;
Irg nand-ecc-engine = <&spi_host>;
}; };
};

ecc_engine: eccOXXXXXXXX {

compatible = "mxic,nand-ecc-engine";
reg = <XXXXXXXX YYYyyyyy>;

};

ecc_engine: ecc@xxxxxxxx {
compatible = "mxic,nand-ecc-engine";
reg = <XXXXXXXX YYYYYYYy>;

};

» ->init/cleanup_ctx() one time configuration/allocations

» —>prepare_io_req() gets called for any page I/O
requesting ECC correction, enables the engine, save
information on the request, etc

» ->finish_io_req() gets called for any page |I/O requesting
ECC correction, ends the transfer, disables the engine, reports
read errors if relevant, etc

/**
* struct nand_ecc_engine_ops - ECC engine operations
* @init_ctx: given a desired user configuration for the pointed NAND device, requests
* the ECC engine driver to setup a configuration with values it supports.
* @cleanup_ctx: clean the context initialized by @init_ctx.
* Oprepare_io_req: is called before reading/writing a page to prepare the I/0 request
* to be performed with ECC correction.
* Ofinish_io_req: is called after reading/writing a page to terminate the I/0 request
and ensure proper ECC correction.
*/
struct nand_ecc_engine_ops {
int (*init_ctx) (struct nand_device *nand);
void (*cleanup_ctx) (struct nand_device *nand);
int (*prepare_io_req) (struct nand_device *nand, struct nand_page_io_req *req);
int (*finish_io_req) (struct nand_device *nand, struct nand_page_io_req *req);

};

9

» This structure will be registered at probe time and saved into
a system-wide list of available ECC engines

/x*
* struct nand_ecc_engine - ECC engine abstraction for NAND
* devices
* @dev: Host device
* Onode: Private field for registration time
* Qops: ECC engine operations
* @priv: Private data
*/

struct nand_ecc_engine {

struct device *dev;

struct list_head node;

struct nand_ecc_engine_ops *ops;
void *priv;

» Bootloaders don't have support for these external engines yet

» The raw NAND core carries so much history that is very
difficult to make it fit the ECC abstraction without breaking
numerous drivers

» New ECC engine drivers to come?

» NOR flashes carrying embedded Hamming ECC engines due
to automotive safety constraints (ASIL-B/ASIL-D).
— Will it soon be offloaded? (ease cony

Questions? Suggestions?
Comments?

Miquel Raynal
miquel@bootlin.com

Slides under CC-BY-SA 3.0

https://bootlin.com/pub/conferences/2020/elce/raynal-ecc-engines

https://bootlin.com/pub/conferences/2020/elce/raynal-ecc-engines

9

> RAM picture slide ?7:
Unkown author. Possibly Cyberdex (given the authors right
revendication). “Personnal work” supposed (given the
revendication). Public domain,

https://commons.wikimedia.org/w/index.php?curid=647267

» CD-R picture slide ?77?:
Author: Ubern00b, Personnal work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=226419

» R. Hamming picture slide ?7?:
Source (WP: NFCC 4), Fair use,

https://en.wikipedia.org/w/index.php?curid=40177109

https://commons.wikimedia.org/w/index.php?curid=647267
https://commons.wikimedia.org/w/index.php?curid=226419
https://en.wikipedia.org/w/index.php?curid=40177109

