
Fosdem 2021

Embedded Linux from
scratch in 45 minutes
Michael Opdenacker
michael.opdenacker@bootlin.com

© Copyright 2004-2021, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/59

Welcome to the special edition of FOSDEM for Covid

<conspiracy>Note that this is the FOSDEM logo since 2014. Weird, isn’t it?</conspiracy>
Image credits: https://commons.wikimedia.org/wiki/File:FOSDEM_logo.svg

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/59

https://commons.wikimedia.org/wiki/File:FOSDEM_logo.svg

Michael Opdenacker

▶ Founder and Embedded Linux engineer at Bootlin:
▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Focusing only on Free and Open Source Software

▶ Free Software contributor:
▶ Current maintainer of the Elixir Cross Referencer,

making it easier to study the sources of big C projects
like the Linux kernel. See
https://elixir.bootlin.com

▶ Co-author of Bootlin’s freely available embedded Linux
and kernel training materials
(https://bootlin.com/docs/)

▶ Former maintainer of GNU Typist

Project
selection

Identifier
search

Source
browsing

All versions
available

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/59

https://elixir.bootlin.com
https://bootlin.com/docs/
https://www.gnu.org/software/gtypist/

Embedded Linux from scratch in 45 minutes

Introduction

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/59

What I like in embedded Linux

▶ Linux is perfect for operating devices with a fixed set of features.
Unlike on the desktop, Linux is almost in every existing embedded system.

▶ Embedded Linux makes Linux easy to learn: just a few programs and libraries are
sufficient. You can understand the usefulness of each file in your filesystem.

▶ The Linux kernel is standalone: no complex dependencies against external
software. The code is in C!

▶ Linux works with just a few MB of RAM and storage
▶ There’s a new version of Linux every 2-3 months.
▶ Relatively small development community. You end up meeting lots of familiar

faces at technical conferences (like the Embedded Linux Conference).
▶ Lots of opportunities (and funding available) for becoming a contributor (Linux

kernel, bootloader, build systems...).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/59

Reviving an old presentation

▶ First shown in 2005 at the Libre
Software Meeting in Dijon, France.

▶ Showing a 2.6 Linux kernel booting on
a QEMU emulated ARM board.

▶ One of our most downloaded
presentations at that time.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/59

Things that changed since 2005

In the Linux kernel:
▶ Linux 2.6.x →5.x
▶ Bitkeeper →git
▶ Linux is now everywhere, no need to convince

customers to use it. It’s even easier and easier
to convince then to fund contributions to the
official version.

▶ devtmpfs: automatically creates device files
▶ ARM and other architectures: devices

described by the Device Tree instead of C code
And many more!

In the embedded environment:
▶ The Maker movement
▶ Cheap development boards

500+ EUR →50-100 EUR
▶ The rise of Open Hardware

(Arduino, Beaglebone
Black...)

▶ RISC-V: a new open-source
hardware instruction set
architecture

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/59

RISC-V: a new open-source ISA

▶ ISA: Instruction Set Architecture
▶ Created by the University of California Berkeley, in a world dominated by

proprietary ISAs with heavy royalties (ARM, x86)
▶ Exists in 32, 64 and 128 bit variants, from microcontrollers to powerful server

hardware.
▶ Anyone can use and extend it to create their own SoCs and CPUs.
▶ This reduces costs and promotes reuse and collaboration
▶ Implementations can be proprietary. Many hardware vendors are using RISC-V

CPUs in their hardware (examples: Microchip, Western Digital, Nvidia)
▶ Free implementations are being created

See https://en.wikipedia.org/wiki/RISC-V

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/59

https://en.wikipedia.org/wiki/RISC-V

How to use RISC-V with Linux?

Hardware is now getting available
▶ Last minute news: BeagleV. The first affordable RISC-V board for the

community, should be available at 150 USD in April:
http://beagleboard.org/beaglev.

▶ Icicle kit: with Microchip’s PolarFire SoC and an FPGA with 254 K gates.
Sold at 499 USD at CrowdSupply: https://frama.link/dK1oanrd

▶ Boards with the Kendryte K210 SoC. Sipeed MAix BiT only costs 13 USD
at Seed Studio: https://frama.link/QhBdPjsm. Supported by Linux 5.8
but very limited, as its MMU is not supported by Linux.

▶ You can also synthetize RISC-V cores on FPGAs
▶ Before more hardware is available in 2021, you can get started with the

QEMU emulator, which simulates a virtual board with virtio hardware
Already try it with JSLinux: https://bellard.org/jslinux/

BeagleV

Microchip PolarFire
SoC Icicle kit

Seed Studio Sipeed
MAix BiT

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/59

http://beagleboard.org/beaglev
https://frama.link/dK1oanrd
https://frama.link/QhBdPjsm
https://bellard.org/jslinux/

Goals

Show you the most important aspects of embedded Linux development work
▶ Building a cross-compiling toolchain
▶ Creating a disk image
▶ Booting a using a bootloader
▶ Loading and starting the Linux kernel
▶ Building a root filesystem populated with basic utilities
▶ Configuring the way the system starts
▶ Setting up networking and controlling the system via a web interface

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/59

Things to build today

▶ Cross-compiling toolchain: Buildroot 2020.11.1
▶ Firmware / first stage bootloader: OpenSBI
▶ Bootloader: U-Boot 2021.01
▶ Kernel: Linux 5.11-rc3
▶ Root filesystem and application: BusyBox 1.33.0

That’s possible to compile and assemble in less than 45 minutes!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/59

Embedded Linux from scratch in 45 minutes

Cross-compiling toolchain

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/59

What’s a cross-compiling toolchain?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/59

Why generate your own cross-compiling toolchain?

Compared to ready-made toolchains:
▶ You can choose your compiler version
▶ You can choose your C library (glibc, uClibc, musl)
▶ You can tweak other features
▶ You gain reproducibility: if a bug is found, just apply a fix.

Don’t need to get another toolchain (different bugs)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/59

Choosing the C library

▶ The C library is an essential component of a Linux
system
▶ Interface between the applications and the kernel
▶ Provides the well-known standard C API to ease

application development
▶ Several C libraries are available:

▶ glibc: full featured, but rather big (2 MB on ARM)
▶ uClibc: better adapted to embedded use, smaller and

supporting RISC-V 64.
▶ musl: great for embedded use too, more recent

▶ The choice of the C library must be made at
cross-compiling toolchain generation time, as the GCC
compiler is compiled against a specific C library.

Linux
process
scheduler

Linux
memory
manager

IPC
manager

I/O
interface

Network
interface

Virtual
file

system

Linux-specific

Application

system calls

system calls

functioncalls

functi
on

ca
lls

by Shmuel Csaba Otto Traian; GNU FDL 1.3 & CC-BY-SA 3.0; created 2014-02-27, last updated 2014-03-25

BusyBox
et al.

Application
POSIX-compatible

Source: Wikipedia

(http://bit.ly/2zrGve2)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/59

http://bit.ly/2zrGve2

Generating a RISC-V musl toolchain with Buildroot

▶ Download Buildroot 2020.11.1 from https://buildroot.org

▶ Extract the sources (tar xf)
▶ Run make menuconfig

▶ In Target options →Target Architecture, choose RISCV

▶ In Toolchain →C library, choose musl.
▶ Save your configuration and run:

make sdk

▶ At the end, you have an toolchain archive in
output/images/riscv64-buildroot-linux-musl_sdk-
buildroot.tar.gz

▶ Extract the archive in a suitable directory, and in the extracted
directory, run: ./relocate-sdk.sh

https://asciinema.org/a/383836

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/59

https://buildroot.org
https://asciinema.org/a/383836

Testing the toolchain

▶ Create a new riscv64-env.sh file you can source to set
environment variables for your project:

export PATH=$HOME/toolchain/riscv64-buildroot-linux-musl_sdk-buildroot/bin:$PATH

▶ Run source riscv64-env.sh, take a hello.c file and test your new compiler:

$ riscv64-linux-gcc -static -o hello hello.c
$ file hello
hello: ELF 64-bit LSB executable, UCB RISC-V, version 1 (SYSV), statically linked, not stripped

We are compiling statically so far to avoid having to deal with shared libraries.
▶ Test your executable with QEMU in user mode:

$ qemu-riscv64 hello
Hello world!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/59

Embedded Linux from scratch in 45 minutes

Hardware emulator

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/59

Finding which machines are emulated by QEMU

Tests made with QEMU 4.2.1 (Ubuntu 20.04)

sudo apt install qemu-system-misc
$ qemu-system-riscv64 -M ?
Supported machines are:
none empty machine
sifive_e RISC-V Board compatible with SiFive E SDK
sifive_u RISC-V Board compatible with SiFive U SDK
spike RISC-V Spike Board (default)
spike_v1.10 RISC-V Spike Board (Privileged ISA v1.10)
spike_v1.9.1 RISC-V Spike Board (Privileged ISA v1.9.1)
virt RISC-V VirtIO board

We are going to use the virt one, emulating VirtIO peripherals (more efficient than
emulating real hardware).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/59

Embedded Linux from scratch in 45 minutes

Booting process and privileges

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/59

RISC-V privilege modes

RISC-V has three privilege modes:
▶ User (U-Mode): applications
▶ Supervisor (S-Mode): OS kernel
▶ Machine (M-Mode): bootloader and firmware

Here are typical combinations:
▶ M: simple embedded systems
▶ M, U: embedded systems with memory protection
▶ M, S, U: Unix-style operating systems with virtual

memory

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/59

Embedded Linux from scratch in 45 minutes

U-Boot bootloader

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/59

Environment for U-Boot cross-compiling

▶ Download U-Boot 2021.01 sources
▶ Let’s add an environment variable to our riscv64-env.sh file for cross-compiling:

export CROSS_COMPILE=riscv64-linux-

▶ CROSS_COMPILE is the cross-compiler prefix, as our cross-compiler is
riscv64-linux-gcc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/59

Cross-compiling U-Boot

▶ Find U-Boot ready-made configurations for RISC-V:

ls configs | grep riscv

▶ We will choose the configuration for QEMU and U-Boot running in S Mode:

make qemu-riscv64_smode_defconfig

▶ Now let’s compile U-Boot (-j8: 8 jobs compile jobs in parallel)

make -j8

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/59

Embedded Linux from scratch in 45 minutes

Firmware

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/59

OpenSBI: Open Supervisor Binary Interface

▶ Required to start an OS (S mode) from the Supervisor/Firmware (M mode)

git clone https://github.com/riscv/opensbi.git
cd opensbi
git checkout v0.8
make PLATFORM=generic FW_PAYLOAD_PATH=../u-boot-2021.01/u-boot.bin

▶ Run the above command every time you update U-Boot
▶ This generates the build/platform/generic/firmware/fw_payload.elf file

which is a binary that QEMU can boot.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/59

Starting U-Boot in QEMU

qemu-system-riscv64 -m 2G \
-nographic \
-machine virt \
-smp 8 \
-bios opensbi/build/platform/generic/firmware/fw_payload.elf \

▶ -m: amount of RAM in the emulated machine
▶ -smp: number of CPUs in the emulated machine

Exit QEMU with [Ctrl][a] followed by [x]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/59

Embedded Linux from scratch in 45 minutes

Linux kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/59

Environment for kernel cross-compiling

▶ Download Linux 5.11-rc3 sources from https://kernel.org
▶ Let’s add two environment variables for kernel cross-compiling to our

riscv64-env.sh file:

export CROSS_COMPILE=riscv64-linux-
export ARCH=riscv

▶ CROSS_COMPILE is the cross-compiler prefix, as our cross-compiler is
riscv64-linux-gcc.

▶ ARCH is the name of the subdirectory in arch/ corresponding to the target
architecture.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/59

https://kernel.org
https://elixir.bootlin.com/linux/latest/source/arch/

Kernel configuration

▶ Lets take the default Linux kernel configuration for RISCV:

$ make help | grep defconfig
defconfig - New config with default from ARCH supplied defconfig
savedefconfig - Save current config as ./defconfig (minimal config)
alldefconfig - New config with all symbols set to default
olddefconfig - Same as oldconfig but sets new symbols to their
nommu_k210_defconfig - Build for nommu_k210
nommu_virt_defconfig - Build for nommu_virt
rv32_defconfig - Build for rv32

$ make defconfig

▶ We can now further customize the configuration:

make menuconfig

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/59

Compiling the kernel

make

To compile faster, run multiple jobs in parallel:

make -j 8

To recompile faster (7x according to some benchmarks), run multiple jobs in parallel:

make -j 8 CC="ccache riscv64-linux-gcc"

At the end, you have these files:
vmlinux: raw kernel in ELF format (not bootable, for debugging)
arch/riscv/boot/Image: uncompressed bootable kernel
arch/riscv/boot/Image.gz: compressed kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/59

Embedded Linux from scratch in 45 minutes

Booting the kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/59

Booting the Linux kernel directly

We could boot the Linux kernel directly as follows

cd opensbi
make PLATFORM=generic FW_PAYLOAD_PATH=../linux-5.11-rc3/arch/riscv/boot/Image
cd ..

qemu-system-riscv64 -m 2G \
-nographic \
-machine virt \
-smp 8 \
-kernel opensbi/build/platform/generic/firmware/fw_payload.elf \
-append "console=ttyS0" \

However, what we want to demonstrate is the normal booting process:
OpenSBI →U-Boot →Linux →Userspace

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/59

Booting the Linux kernel from U-Boot

▶ We want to show how to set the U-Boot environment to load the Linux kernel
and to specify the Linux kernel command line

▶ For this purpose, we will need some storage space to store the U-Boot
environment, load the kernel binary, and also to contain the filesystem that Linux
will boot on.

▶ Therefore, let’s create a disk image to give some storage space for QEMU

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/59

Disk image creation (1)

▶ Let’s create a 128 MB disk image:

dd if=/dev/zero of=disk.img bs=1M count=128

▶ Let’s create two partitions in this image

cfdisk disk.img

▶ A first 64 MB primary partition (type W95 FAT32 (LBA)), marked as bootable
▶ A second partition with remaining space (default type: Linux)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/59

Disk image creation (2)

▶ Let’s access the partitions in this disk image:

sudo losetup -f --show --partscan disk.img
/dev/loop2

ls -la /dev/loop2*
brw-rw---- 1 root disk 7, 2 Jan 14 10:50 /dev/loop2
brw-rw---- 1 root disk 259, 11 Jan 14 10:50 /dev/loop2p1
brw-rw---- 1 root disk 259, 12 Jan 14 10:50 /dev/loop2p2

▶ We can now format the partitions:

sudo mkfs.vfat -F 32 -n boot /dev/loop2p1
sudo mkfs.ext4 -L rootfs /dev/loop2p2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/59

Copying the Linux image to the FAT partition

▶ Let’s create a mount point for the FAT partition:

mkdir /mnt/boot

▶ Let’s mount it:

sudo mount /dev/loop2p1 /mnt/boot

▶ Let’s copy the kernel image to it:

sudo cp linux-5.11-rc3/arch/riscv/boot/Image /mnt/boot

▶ And then unmount the filesystem to commit changes:

sudo umount /mnt/boot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/59

Recompiling U-Boot for environment support
We want U-Boot be able to use an environment
in a FAT partition on a virtio disk.
▶ So, let’s reconfigure U-Boot with the following settings

make menuconfig

▶ CONFIG_ENV_IS_IN_FAT=y
▶ CONFIG_ENV_FAT_INTERFACE="virtio"
▶ CONFIG_ENV_FAT_DEVICE_AND_PART="0:1"

▶ Then recompile U-Boot

make -j8

▶ Then update the firmware loader:

cd ../opensbi
make PLATFORM=generic FW_PAYLOAD_PATH=../u-boot-2021.01/u-boot.bin

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/59

Run U-Boot with an environment

▶ Add a disk to the emulated machine:

qemu-system-riscv64 -m 2G -nographic -machine virt -smp 8 \
-bios opensbi/build/platform/generic/firmware/fw_payload.elf \
-drive file=disk.img,format=raw,id=hd0 \
-device virtio-blk-device,drive=hd0 \

▶ In U-Boot, you should now be able to save an environment:

setenv foo bar
saveenv

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/59

Embedded Linux from scratch in 45 minutes

Booting Linux from U-Boot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/59

Requirements for booting Linux

To boot the Linux kernel, U-Boot needs to load
▶ A Linux kernel image. In our case, let’s load it from our virtio disk

to RAM (find a suitable RAM address by using the bdinfo command in U-Boot):

fatload virtio 0:1 84000000 Image

▶ Possibly the image of an Initramfs, a filesystem in RAM that Linux can use.
▶ A Device Tree Binary (DTB), letting the kernel know which SoC and devices we

have. This allows the same kernel to support many different SoCs and boards.
▶ DTB files are compiled from DTS files in arch/riscv/boot/dts/
▶ However, there is no such DTS file for the RISC-V QEMU virt board.
▶ The DTB for our board is actually passed by QEMU to OpenSBI and then to

U-Boot. See https://tinyurl.com/y4ae5ptd
▶ In U-Boot, at least in our case, the DTB is available in RAM at address

${fdtcontroladdr}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/59

https://elixir.bootlin.com/linux/latest/source/arch/riscv/boot/dts/
https://tinyurl.com/y4ae5ptd

Linux kernel command line

▶ We need to set the Linux arguments (kernel command line)

setenv bootargs 'root=/dev/vda2 rootwait console=ttyS0 earlycon=sbi rw'

▶ root=/dev/vda2
Device for Linux to mount as root filesystem

▶ rootwait
Wait for the root device to be ready before trying to mount it

▶ console=ttyS0
Device (here first serial line) to send Linux booting messages to

▶ earlycon=sbi
Allows to have more messages before the console driver is initialized (Early Console).

▶ rw
Allows to mount the root filesystem in read-write mode.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/59

Booting Linux
▶ Here’s the command to boot the Linux Image file:

booti <Linux address> <Initramfs address> <DTB address>
▶ In our case:

booti 0x84000000 - ${fdtcontroladdr}
▶ So, let’s define the default series of commands that U-Boot will automatically run

after a configurable delay (bootdelay environment variable):

setenv bootcmd 'fatload virtio 0:1 84000000 Image; booti 0x84000000 - ${fdtcontroladdr}'

▶ Finally, we must save these new settings:
saveenv
▶ ... and boot our system (boot runs bootcmd):

boot
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/59

Embedded Linux from scratch in 45 minutes

Building the root filesystem

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/59

BusyBox - About 10 years ago

Most commands in one binary!

[, [[, acpid, addgroup, adduser, adjtimex, ar, arp, arping, ash, awk, basename, beep, blkid, brctl, bunzip2, bzcat, bzip2,
cal, cat, catv, chat, chattr, chgrp, chmod, chown, chpasswd, chpst, chroot, chrt, chvt, cksum, clear, cmp, comm, cp, cpio,
crond, crontab, cryptpw, cut, date, dc, dd, deallocvt, delgroup, deluser, depmod, devmem, df, dhcprelay, diff, dirname,
dmesg, dnsd, dnsdomainname, dos2unix, dpkg, du, dumpkmap, dumpleases, echo, ed, egrep, eject, env, envdir, envuidgid,
expand, expr, fakeidentd, false, fbset, fbsplash, fdflush, fdformat, fdisk, fgrep, find, findfs, flash_lock, flash_unlock,
fold, free, freeramdisk, fsck, fsck.minix, fsync, ftpd, ftpget, ftpput, fuser, getopt, getty, grep, gunzip, gzip, hd,
hdparm, head, hexdump, hostid, hostname, httpd, hush, hwclock, id, ifconfig, ifdown, ifenslave, ifplugd, ifup, inetd,
init, inotifyd, insmod, install, ionice, ip, ipaddr, ipcalc, ipcrm, ipcs, iplink, iproute, iprule, iptunnel, kbd_mode,
kill, killall, killall5, klogd, last, length, less, linux32, linux64, linuxrc, ln, loadfont, loadkmap, logger, login,
logname, logread, losetup, lpd, lpq, lpr, ls, lsattr, lsmod, lzmacat, lzop, lzopcat, makemime, man, md5sum, mdev, mesg,
microcom, mkdir, mkdosfs, mkfifo, mkfs.minix, mkfs.vfat, mknod, mkpasswd, mkswap, mktemp, modprobe, more, mount,
mountpoint, mt, mv, nameif, nc, netstat, nice, nmeter, nohup, nslookup, od, openvt, passwd, patch, pgrep, pidof, ping,
ping6, pipe_progress, pivot_root, pkill, popmaildir, printenv, printf, ps, pscan, pwd, raidautorun, rdate, rdev, readlink,
readprofile, realpath, reformime, renice, reset, resize, rm, rmdir, rmmod, route, rpm, rpm2cpio, rtcwake, run-
parts, runlevel, runsv, runsvdir, rx, script, scriptreplay, sed, sendmail, seq, setarch, setconsole, setfont, setkeycodes,
setlogcons, setsid, setuidgid, sh, sha1sum, sha256sum, sha512sum, showkey, slattach, sleep, softlimit, sort, split, start-
stop-daemon, stat, strings, stty, su, sulogin, sum, sv, svlogd, swapoff, swapon, switch_root, sync, sysctl, syslogd, tac,
tail, tar, taskset, tcpsvd, tee, telnet, telnetd, test, tftp, tftpd, time, timeout, top, touch, tr, traceroute, true, tty,
ttysize, udhcpc, udhcpd, udpsvd, umount, uname, uncompress, unexpand, uniq, unix2dos, unlzma, unlzop, unzip, uptime,
usleep, uudecode, uuencode, vconfig, vi, vlock, volname, watch, watchdog, wc, wget, which, who, whoami, xargs, yes, zcat,
zcip

Source: run /bin/busybox

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/59

BusyBox - In 2019

[, [[, acpid, add-shell, addgroup, adduser, adjtimex, ar, arch, arp, arping, awk, base64, basename, bbconfig, bc, beep,
blkdiscard, blkid, blockdev, bootchartd, brctl, bunzip2, busybox, bzcat, bzip2, cal, cat, chat, chattr, chcon, chgrp,
chmod, chown, chpasswd, chpst, chroot, chrt, chvt, cksum, clear, cmp, comm, conspy, cp, cpio, crond, crontab, cryptpw,
cttyhack, cut, date, dc, dd, deallocvt, delgroup, deluser, depmod, devmem, df, diff, dirname, dmesg, dnsd, dnsdomainname,
dos2unix, dpkg, dpkg-deb, du, dumpkmap, dumpleases, echo, ed, egrep, eject, env, envdir, envuidgid, ether-
wake, expand, expr, factor, fakeidentd, fallocate, false, fatattr, fbset, fbsplash, fdflush, fdformat, fdisk, fgconsole,
fgrep, find, findfs, flash_eraseall, flash_lock, flash_unlock, flashcp, flock, fold, free, freeramdisk, fsck, fsck.minix,
fsfreeze, fstrim, fsync, ftpd, ftpget, ftpput, fuser, getenforce, getopt, getsebool, getty, grep, groups, gunzip, gzip,
halt, hd, hdparm, head, hexdump, hexedit, hostid, hostname, httpd, hush, hwclock, id, ifconfig, ifdown, ifenslave,
ifplugd, ifup, inetd, init, insmod, install, ionice, iostat, ip, ipaddr, ipcalc, ipcrm, ipcs, iplink, ipneigh, iproute,
iprule, iptunnel, kbd_mode, kill, killall, killall5, klogd, last, less, link, linux32, linux64, linuxrc, ln, load_policy,
loadfont, loadkmap, logger, login, logname, logread, losetup, lpd, lpq, lpr, ls, lsattr, lsmod, lsof, lspci, lsscsi,
lsusb, lzcat, lzma, lzop, lzopcat, makedevs, makemime, man, matchpathcon, md5sum, mdev, mesg, microcom, minips, mkdir,
mkdosfs, mke2fs, mkfifo, mkfs.ext2, mkfs.minix, mkfs.reiser, mkfs.vfat, mknod, mkpasswd, mkswap, mktemp, modinfo,
modprobe, more, mount, mountpoint, mpstat, mt, mv, nameif, nanddump, nandwrite, nbd-client, nc, netcat, netstat, nice, nl,
nmeter, nohup, nologin, nproc, nsenter, nslookup, ntpd, nuke, od, openvt, partprobe, passwd, paste, patch, pgrep, pidof,
ping, ping6, pipe_progress, pivot_root, pkill, pmap, popmaildir, poweroff, printenv, printf, ps, pscan, pstree, pwd, pwdx,
raidautorun, rdate, rdev, readahead, readlink, readprofile, realpath, reboot, reformime, remove-shell, renice, reset,
resize, restorecon, resume, rev, rfkill, rm, rmdir, rmmod, route, rpm, rpm2cpio, rtcwake, run-init, run-
parts, runcon, runlevel, runsv, runsvdir, rx, script, scriptreplay, sed, selinuxenabled, sendmail, seq, sestatus, setarch,
setconsole, setenforce, setfattr, setfiles, setfont, setkeycodes, setlogcons, setpriv, setsebool, setserial, setsid,
setuidgid, sh, sha1sum, sha256sum, sha3sum, sha512sum, showkey, shred, shuf, slattach, sleep, smemcap, softlimit, sort,
split, ssl_client, start-stop-daemon, stat, strings, stty, su, sulogin, sum, sv, svc, svlogd, svok, swapoff, swapon,
switch_root, sync, sysctl, syslogd, tac, tail, tar, taskset, tc, tcpsvd, tee, telnet, telnetd, test, tftp, tftpd, time,
timeout, top, touch, tr, traceroute, traceroute6, true, truncate, ts, tty, ttysize, tunctl, tune2fs, ubiattach, ubidetach,
ubimkvol, ubirename, ubirmvol, ubirsvol, ubiupdatevol, udhcpc, udhcpd, udpsvd, uevent, umount, uname, uncompress,
unexpand, uniq, unit, unix2dos, unlink, unlzma, unlzop, unxz, unzip, uptime, users, usleep, uudecode, uuencode, vconfig,
vi, vlock, volname, w, wall, watch, watchdog, wc, wget, which, who, whoami, whois, xargs, xxd, xz, xzcat, yes, zcat, zcip

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/59

BusyBox - Dowloading

▶ Download BusyBox 1.33.0 sources from https://busybox.net
▶ Extract the archive with tar xf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/59

https://busybox.net

BusyBox - Configuring

▶ Run make allnoconfig
Starts with no applet selected

▶ Run make menuconfig
▶ In Settings →Build Options, enable

Build static binary (no shared libs)
▶ In Settings →Build Options, set

Cross compiler prefix to riscv64-linux-
▶ Then enable support for the following commands:

ash, init, halt, mount, cat, mkdir, echo, ls, chmod,
uptime, vi, ifconfig, httpd

https://asciinema.org/a/384727

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/59

https://asciinema.org/a/384727

BusyBox - Installing and compiling

▶ Compiling: make or make -j 8 (faster)
Resulting size: only 276344 bytes!
Funny to see that we’re using a 64 bit system
to run such small programs!

▶ Installing in _install/: make install
▶ See the created directory structure and the

symbolic links to /bin/busybox
▶ Installing to the root filesystem:

sudo mkdir /mnt/rootfs
sudo mount /dev/loop2p2 /mnt/rootfs
sudo rsync -aH _install/ /mnt/rootfs/
sudo umount /mnt/rootfs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/59

Completing and configuring the root filesystem (1)

▶ We need to create a dev directory.
The devtmpfs filesystem will automatically be mounted there
(as CONFIG_DEVTMPFS_MOUNT=y)

▶ Let’s also create /proc and /sys so that we can also mount the proc and sysfs
virtual filesystems on the target:

mount -t proc nodev /proc
mount -t sysfs nodev /sys

Without such virtual filesystems, commands such as ps or top can’t work.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/59

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEVTMPFS_MOUNT

Completing and configuring the root filesystem (2)

Let’s automate the mounting of proc and sysfs...
▶ Let’s create an /etc/inittab file to configure Busybox Init:

This is run first script:
::sysinit:/etc/init.d/rcS
Start an "askfirst" shell on the console:
::askfirst:/bin/sh

▶ Let’s create and fill /etc/init.d/rcS to automatically mount the virtual
filesystems:

#!/bin/sh
mount -t proc nodev /proc
mount -t sysfs nodev /sys

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/59

Common mistakes

▶ Don’t forget to make the rcS script executable. Linux won’t allow to execute it
otherwise.

▶ Do not forget #!/bin/sh at the beginning of shell scripts! Without the leading
#! characters, the Linux kernel has no way to know it is a shell script and will try
to execute it as a binary file!

▶ Don’t forget to specify the execution of a shell in /etc/inittab or at the end of
/etc/init.d/rcS. Otherwise, execution will just stop without letting you type
new commands!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/59

Add support for networking (1)

▶ Add a network interface to the emulated machine:

sudo qemu-system-riscv64 -m 2G -nographic -machine virt -smp 8 \
-bios opensbi/build/platform/generic/firmware/fw_payload.elf \
-drive file=disk.img,format=raw,id=hd0 \
-device virtio-blk-device,drive=hd0 \
-netdev tap,id=tapnet,ifname=tap2,script=no,downscript=no \
-device virtio-net-device,netdev=tapnet \

▶ Need to be root to bring up the tap2 network interface

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/59

Add support for networking (2)

▶ On the target machine:

ifconfig -a
ifconfig eth0 192.168.2.100

▶ On the host machine:

ifconfig -a
sudo ifconfig tap2 192.168.2.1
ping 192.168.2.100

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/59

Simple CGI script

#!/bin/sh
echo "Content-type: text/html"
echo
echo "<html>"
echo "<meta http-equiv=\"refresh\" content=\"1\">"
echo "<header></header><body>"
echo "<h1>Uptime information</h1>"
echo "Your embedded device has been running for:<pre>"
echo `uptime`
echo "</pre>"
echo "</body></html>"

Store it in /www/cgi-bin/uptime and make it executable.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/59

Start a web server

▶ On the target machine:

/usr/sbin/httpd -h /www

▶ On the host machine, open in your browser:
http://192.168.2.100/cgi-bin/uptime

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/59

http://192.168.2.100/cgi-bin/uptime

What to remember

▶ Embedded Linux is just made out of simple components. It makes it easier to get
started with Linux.

▶ You just need a toolchain, a bootloader, a kernel and a few executables.
▶ RISC-V is a new, open Instruction Set Architecture, use it and support it!
▶ In embedded Linux, things don’t change that much over time. You just get more

features.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 57/59

Going further and thanks

▶ Drew Fustini’s unmatched presentation about Linux on RISC-V:
https://tinyurl.com/y6j8lfyz

▶ Our ”Embedded Linux system development” training materials (500+ pages,
CC-BY-SA licence):
https://bootlin.com/doc/training/embedded-linux/

▶ All our training materials and conference presentations:
https://bootlin.com/docs/

▶ The Embedded Linux Wiki: presentations, howtos... contribute to it!
https://elinux.org

▶ Gratitude to Geert Uytterhoeven, my mentor in conference fashion, always
wearing a smile and the most relevant and elegant conference T-shirts.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 58/59

https://tinyurl.com/y6j8lfyz
https://bootlin.com/doc/training/embedded-linux/
https://bootlin.com/docs/
https://elinux.org

Questions?
Suggestions?
Comments?

Michael Opdenacker
michael.opdenacker@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/2021/fosdem/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 59/59

https://bootlin.com/pub/conferences/2021/fosdem/

	Embedded Linux from scratch in 45 minutes
	Introduction
	Cross-compiling toolchain
	Hardware emulator
	Booting process and privileges
	U-Boot bootloader
	Firmware
	Linux kernel
	Booting the kernel
	Booting Linux from U-Boot
	Building the root filesystem

