
Device Tree 101

Device Tree 101
Organized in partnership with ST
February 9, 2021

Thomas Petazzoni
thomas.petazzoni@bootlin.com

© Copyright 2004-2021, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/56

 



Who is speaking ?

▶ Thomas Petazzoni
▶ Chief Technical Officer at Bootlin
▶ Joined in 2008, employee #1
▶ Embedded Linux & Linux kernel engineer,

open-source contributor
▶ Author of the Device Tree for Dummies talk in

2013/2014
▶ Buildroot co-maintainer
▶ Linux kernel contributor: ≈ 900 contributions

▶ Member of Embedded Linux Conference
(Europe) program committee

▶ Based in Toulouse, France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/56

 



Agenda

▶ Bootlin introduction
▶ STM32MP1 introduction
▶ Why the Device Tree ?
▶ Basic Device Tree syntax
▶ Device Tree inheritance
▶ Device Tree specifications and bindings
▶ Device Tree and Linux kernel drivers
▶ Common properties and examples

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/56

 



Bootlin

▶ In business since 2004
▶ Team based in France
▶ Serving customers worldwide

▶ 18% revenue from France
▶ 44% revenue from EU except France
▶ 38% revenue outside EU

▶ Highly focused and recognized expertise
▶ Embedded Linux
▶ Linux kernel
▶ Embedded Linux build systems

▶ Activities
▶ Training courses (≃ 20% revenue)
▶ Engineering services (≃ 80% revenue)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/56

 



Bootlin training courses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/56

 



Why choose Bootlin training courses ?

▶ Complete training materials freely available
▶ Open-source license: Creative Commons
▶ Allows to verify in detail the course contents
▶ Shows Bootlin commitment to knowledge sharing
▶ Unique in the training industry

▶ Experienced trainers
▶ Bootlin trainers are also engineers
▶ Working on real engineering projects
▶ Up-to-date and in-field experience

▶ Worldwide recognized training courses
▶ Taught 100s of sessions
▶ To 1000s of engineers
▶ For the past 15 years

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/56

 



Why choose Bootlin training courses ?

▶ Complete training materials freely available
▶ Open-source license: Creative Commons
▶ Allows to verify in detail the course contents
▶ Shows Bootlin commitment to knowledge sharing
▶ Unique in the training industry

▶ Experienced trainers
▶ Bootlin trainers are also engineers
▶ Working on real engineering projects
▶ Up-to-date and in-field experience

▶ Worldwide recognized training courses
▶ Taught 100s of sessions
▶ To 1000s of engineers
▶ For the past 15 years

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/56

 



Why choose Bootlin training courses ?

▶ Complete training materials freely available
▶ Open-source license: Creative Commons
▶ Allows to verify in detail the course contents
▶ Shows Bootlin commitment to knowledge sharing
▶ Unique in the training industry

▶ Experienced trainers
▶ Bootlin trainers are also engineers
▶ Working on real engineering projects
▶ Up-to-date and in-field experience

▶ Worldwide recognized training courses
▶ Taught 100s of sessions
▶ To 1000s of engineers
▶ For the past 15 years

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/56

 



Bootlin engineering services

▶ Main activities
▶ Linux Board Support Package development, update

and maintenance
▶ Linux kernel drivers development
▶ Bootloader and Linux kernel porting
▶ System integration: Yocto, Buildroot, boot time, secure

boot, etc.
▶ Upstreaming
▶ Consulting and technical support
▶ Focus on the low-level software stack

▶ Customers
▶ Silicon vendors: interested in U-Boot, Linux, Buildroot

or Yocto support for their product, usually upstream
▶ Embedded system manufacturers: complete BSP,

specific drivers, debugging, optimization, consulting

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/56

 



Bootlin: open-source contributor

▶ Bootlin 20th contributing company worldwide to the
Linux kernel

▶ 7600+ patches contributed, mainly around hardware
support

▶ Maintainers of several subsystems of the kernel: I3C,
RTC, MTD, and several platforms

▶ Key contributor to Buildroot: co-maintainer, 5000+
patches contributed

▶ Contributor to the Yocto Project
▶ Contributions to Barebox, Linux Test Project, etc.
▶ Freely available training materials
▶ Numerous talks at conferences to share technical

knowledge
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/56

 



STM32MP157F system-on-chip

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/56

 



STM32MP1 system-on-chip family

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/56

 



STM32MP1 Discovery Kits

▶ Discovery Kit 1 (DK1)
▶ SoC: STM32MP157A
▶ 512 MB DDR, microSD
▶ 1G Ethernet, 1x USB-C, 4x USB-A, LEDs,

buttons
▶ HDMI, audio codec, DSI connector
▶ GPIO connectors, Arduino/RaspberryPi

shields
▶ On-board ST-Link

▶ Discovery Kit 2 (DK2)
▶ SoC: STM32MP157C
▶ Same as DK1
▶ WiFi/Bluetooth
▶ Display + touchscreen

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/56

 



STM32MP1 DK2 partial block diagram

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/56

 



Discoverable vs. non-discoverable hardware

▶ Some hardware busses provide discoverability mechanisms
▶ E.g: PCI(e), USB
▶ One does not need to know ahead of time what will be connected on these busses
▶ Devices can be enumerated and identified at runtime
▶ Concept of vendor ID, product ID, device class, etc.

▶ But many hardware busses do not provide discoverability mechanisms
▶ E.g: I2C, SPI, 1-wire, memory-mapped, etc.
▶ One needs to know what is connected on those busses, and how they are connected

to the rest of the system
▶ Embedded systems typically make extensive use of such busses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/56

 



Discoverable vs. non-discoverable hardware

▶ Some hardware busses provide discoverability mechanisms
▶ E.g: PCI(e), USB
▶ One does not need to know ahead of time what will be connected on these busses
▶ Devices can be enumerated and identified at runtime
▶ Concept of vendor ID, product ID, device class, etc.

▶ But many hardware busses do not provide discoverability mechanisms
▶ E.g: I2C, SPI, 1-wire, memory-mapped, etc.
▶ One needs to know what is connected on those busses, and how they are connected

to the rest of the system
▶ Embedded systems typically make extensive use of such busses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/56

 



Hardware description for non-discoverable hardware

Allows the operating system or bootloader to know things like:
▶ This system-on-chip has:

▶ 2 Cortex-A7 CPU cores
▶ 2 memory-mapped UART controllers of this variant, one with registers at

0x5c000000 and IRQ 37, and another with registers at 0x4000e000 and IRQ 38
▶ 3 I2C controllers of that variant, with registers at those memory-mapped addresses,

those IRQs and taking their input clock from this source
▶ This board has a CS42L51 audio codec

▶ Connected on the I2C bus 1 of the SoC, at slave address 0x4A
▶ Connected to the SAI interface 2 of the SoC
▶ With its reset signal connected to GPIO 67 of the SoC

▶ ...
→ These details cannot be guessed by the operating system/bootloader.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/56

 



Describing non-discoverable hardware

1. Directly in the
OS/bootloader
code

2. Using ACPI tables
3. Using a Device Tree

▶ Using compiled data structures, typically in C
▶ How it was done on most embedded platforms in Linux,

U-Boot.
▶ Considered not maintainable/sustainable on ARM32,

which motivated the move to another solution.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/56

 



Describing non-discoverable hardware

1. Directly in the
OS/bootloader
code

2. Using ACPI tables

3. Using a Device Tree

▶ On x86 systems, but also on a subset of ARM64
platforms

▶ Tables provided by the firmware

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/56

 



Describing non-discoverable hardware

1. Directly in the
OS/bootloader
code

2. Using ACPI tables

3. Using a Device Tree

▶ Originates from OpenFirmware, defined by Sun, used
on SPARC and PowerPC
▶ That’s why many Linux/U-Boot functions related to

DT have a of_ prefix
▶ Now used most embedded-oriented CPU architectures

that run Linux: ARC, ARM64, RISC-V, ARM32,
PowerPC, Xtensa, MIPS, etc.

▶ Writing/tweaking a DT is now always necessary when
porting Linux to a new board.

▶ The topic of this talk !

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/56

 



Device Tree: from source to blob

▶ A tree data structure describing the hardware is written
by a developer in a Device Tree Source file, .dts

▶ Processed by the Device Tree Compiler, dtc
▶ Produces a more efficient representation: Device Tree

Blob, .dtb
▶ Additional C preprocessor pass
▶ .dtb → accurately describes the hardware platform in

an OS-agnostic way.
▶ .dtb ≈ few dozens of kilobytes
▶ DTB also called FDT, Flattened Device Tree, once

loaded into memory.
▶ fdt command in U-Boot
▶ fdt_ APIs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/56

 



dtc example

$ cat foo.dts
/dts-v1/;

/ {
welcome = <0xBADCAFE>;
bootlin {

webinar = "great";
demo = <1>, <2>, <3>;

};
};

$ dtc -I dts -O dtb -o foo.dtb foo.dts
$ ls -l foo.dt*
-rw-r--r-- 1 thomas thomas 169 ... foo.dtb
-rw-r--r-- 1 thomas thomas 102 ... foo.dts

$ dtc -I dtb -O dts foo.dtb
/dts-v1/;

/ {
welcome = <0xbadcafe>;

bootlin {
webinar = "great";
demo = <0x01 0x02 0x03>;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/56

 



dtc example

$ cat foo.dts
/dts-v1/;

/ {
welcome = <0xBADCAFE>;
bootlin {

webinar = "great";
demo = <1>, <2>, <3>;

};
};

$ dtc -I dts -O dtb -o foo.dtb foo.dts
$ ls -l foo.dt*
-rw-r--r-- 1 thomas thomas 169 ... foo.dtb
-rw-r--r-- 1 thomas thomas 102 ... foo.dts

$ dtc -I dtb -O dts foo.dtb
/dts-v1/;

/ {
welcome = <0xbadcafe>;

bootlin {
webinar = "great";
demo = <0x01 0x02 0x03>;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/56

 



dtc example

$ cat foo.dts
/dts-v1/;

/ {
welcome = <0xBADCAFE>;
bootlin {

webinar = "great";
demo = <1>, <2>, <3>;

};
};

$ dtc -I dts -O dtb -o foo.dtb foo.dts
$ ls -l foo.dt*
-rw-r--r-- 1 thomas thomas 169 ... foo.dtb
-rw-r--r-- 1 thomas thomas 102 ... foo.dts

$ dtc -I dtb -O dts foo.dtb
/dts-v1/;

/ {
welcome = <0xbadcafe>;

bootlin {
webinar = "great";
demo = <0x01 0x02 0x03>;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/56

 



Device Tree: using the blob

▶ Can be linked directly inside a bootloader
binary
▶ For example: U-Boot, Barebox

▶ Can be passed to the operating system by the
bootloader
▶ Most common mechanism for the Linux kernel
▶ U-Boot:

bootz <kernel-addr> - <dtb-addr>
▶ The DTB address is passed through a

dedicated CPU register to the kernel: r2 on
ARM32

▶ Bootloader can adjust the DTB before passing
it to the kernel

▶ The DTB parsing can be done using libfdt,
or ad-hoc code

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/56

 



Where are Device Tree Sources located ?

▶ Even though they are OS-agnostic, no central and OS-neutral place to host
Device Tree sources and share them between projects
▶ Often discussed, never done

▶ In practice, the Linux kernel sources can be considered as the canonical location
for Device Tree Source files
▶ arch/<ARCH>/boot/dts
▶ ≈ 4700 Device Tree Source files in Linux as of 5.10

▶ Duplicated/synced in various projects
▶ U-Boot, Barebox, TF-A

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/56

 



Example with STM32MP157A-DK1

▶ 1st stage: TF-A
▶ DT in fdts/stm32mp157a-dk1.dts
▶ Build with PLAT=stm32mp1 DTB_FILE_NAME=stm32mp157a-dk1.dtb
▶ Bundles the DTB in the resulting tf-a-stm32mp157a-dk1.stm32

▶ 2nd stage: U-Boot
▶ DT in arch/arm/dts/stm32mp157a-dk1.dts
▶ Configure with stm32mp15_trusted_defconfig
▶ Build with DEVICE_TREE=stm32mp157a-dk1
▶ Bundles the DTB in the resulting u-boot.stm32

▶ OS: Linux kernel
▶ DT in arch/arm/boot/dts/stm32mp157a-dk1.dts
▶ Configure with multi_v7_defconfig
▶ Build
▶ Kernel image: arch/arm/boot/zImage, DTB:

arch/arm/boot/dts/stm32mp157a-dk1.dtb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/56

 



Booting Linux on STM32MP157A-DK1

U-Boot 2020.07 (Feb 04 2021 - 16:27:10 +0100)
CPU: STM32MP157AAC Rev.B
Model: STMicroelectronics STM32MP157A-DK1 Discovery Board

STM32MP> printenv kernel_addr_r
kernel_addr_r=0xc2000000
STM32MP> printenv fdt_addr_r
fdt_addr_r=0xc4000000

STM32MP> ext4load mmc 0:4 ${kernel_addr_r} /boot/zImage
4202992 bytes read in 207 ms (19.4 MiB/s)
STM32MP> ext4load mmc 0:4 ${fdt_addr_r} /boot/stm32mp157a-dk1.dtb
53881 bytes read in 31 ms (1.7 MiB/s)

STM32MP> bootz ${kernel_addr_r} - ${fdt_addr_r}

Kernel image @ 0xc2000000 [ 0x000000 - 0x4021f0 ]
## Flattened Device Tree blob at c4000000

Booting using the fdt blob at 0xc4000000
Loading Device Tree to cffef000, end cffff278 ... OK

Starting kernel ...

[ 0.000000] Linux version 5.8.13 (thomas@windsurf) (arm-none-linux-gnueabihf-gcc....)
[ 0.000000] CPU: ARMv7 Processor [410fc075] revision 5 (ARMv7), cr=10c5387d
...
[ 0.000000] OF: fdt: Machine model: STMicroelectronics STM32MP157A-DK1 Discovery Board

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/56

 



Booting Linux on STM32MP157A-DK1

U-Boot 2020.07 (Feb 04 2021 - 16:27:10 +0100)
CPU: STM32MP157AAC Rev.B
Model: STMicroelectronics STM32MP157A-DK1 Discovery Board

STM32MP> printenv kernel_addr_r
kernel_addr_r=0xc2000000
STM32MP> printenv fdt_addr_r
fdt_addr_r=0xc4000000

STM32MP> ext4load mmc 0:4 ${kernel_addr_r} /boot/zImage
4202992 bytes read in 207 ms (19.4 MiB/s)
STM32MP> ext4load mmc 0:4 ${fdt_addr_r} /boot/stm32mp157a-dk1.dtb
53881 bytes read in 31 ms (1.7 MiB/s)

STM32MP> bootz ${kernel_addr_r} - ${fdt_addr_r}

Kernel image @ 0xc2000000 [ 0x000000 - 0x4021f0 ]
## Flattened Device Tree blob at c4000000

Booting using the fdt blob at 0xc4000000
Loading Device Tree to cffef000, end cffff278 ... OK

Starting kernel ...

[ 0.000000] Linux version 5.8.13 (thomas@windsurf) (arm-none-linux-gnueabihf-gcc....)
[ 0.000000] CPU: ARMv7 Processor [410fc075] revision 5 (ARMv7), cr=10c5387d
...
[ 0.000000] OF: fdt: Machine model: STMicroelectronics STM32MP157A-DK1 Discovery Board

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/56

 



Booting Linux on STM32MP157A-DK1

U-Boot 2020.07 (Feb 04 2021 - 16:27:10 +0100)
CPU: STM32MP157AAC Rev.B
Model: STMicroelectronics STM32MP157A-DK1 Discovery Board

STM32MP> printenv kernel_addr_r
kernel_addr_r=0xc2000000
STM32MP> printenv fdt_addr_r
fdt_addr_r=0xc4000000

STM32MP> ext4load mmc 0:4 ${kernel_addr_r} /boot/zImage
4202992 bytes read in 207 ms (19.4 MiB/s)
STM32MP> ext4load mmc 0:4 ${fdt_addr_r} /boot/stm32mp157a-dk1.dtb
53881 bytes read in 31 ms (1.7 MiB/s)

STM32MP> bootz ${kernel_addr_r} - ${fdt_addr_r}

Kernel image @ 0xc2000000 [ 0x000000 - 0x4021f0 ]
## Flattened Device Tree blob at c4000000

Booting using the fdt blob at 0xc4000000
Loading Device Tree to cffef000, end cffff278 ... OK

Starting kernel ...

[ 0.000000] Linux version 5.8.13 (thomas@windsurf) (arm-none-linux-gnueabihf-gcc....)
[ 0.000000] CPU: ARMv7 Processor [410fc075] revision 5 (ARMv7), cr=10c5387d
...
[ 0.000000] OF: fdt: Machine model: STMicroelectronics STM32MP157A-DK1 Discovery Board

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/56

 



Booting Linux on STM32MP157A-DK1

U-Boot 2020.07 (Feb 04 2021 - 16:27:10 +0100)
CPU: STM32MP157AAC Rev.B
Model: STMicroelectronics STM32MP157A-DK1 Discovery Board

STM32MP> printenv kernel_addr_r
kernel_addr_r=0xc2000000
STM32MP> printenv fdt_addr_r
fdt_addr_r=0xc4000000

STM32MP> ext4load mmc 0:4 ${kernel_addr_r} /boot/zImage
4202992 bytes read in 207 ms (19.4 MiB/s)
STM32MP> ext4load mmc 0:4 ${fdt_addr_r} /boot/stm32mp157a-dk1.dtb
53881 bytes read in 31 ms (1.7 MiB/s)

STM32MP> bootz ${kernel_addr_r} - ${fdt_addr_r}

Kernel image @ 0xc2000000 [ 0x000000 - 0x4021f0 ]
## Flattened Device Tree blob at c4000000

Booting using the fdt blob at 0xc4000000
Loading Device Tree to cffef000, end cffff278 ... OK

Starting kernel ...

[ 0.000000] Linux version 5.8.13 (thomas@windsurf) (arm-none-linux-gnueabihf-gcc....)
[ 0.000000] CPU: ARMv7 Processor [410fc075] revision 5 (ARMv7), cr=10c5387d
...
[ 0.000000] OF: fdt: Machine model: STMicroelectronics STM32MP157A-DK1 Discovery Board

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/56

 



Booting Linux on STM32MP157A-DK1

U-Boot 2020.07 (Feb 04 2021 - 16:27:10 +0100)
CPU: STM32MP157AAC Rev.B
Model: STMicroelectronics STM32MP157A-DK1 Discovery Board

STM32MP> printenv kernel_addr_r
kernel_addr_r=0xc2000000
STM32MP> printenv fdt_addr_r
fdt_addr_r=0xc4000000

STM32MP> ext4load mmc 0:4 ${kernel_addr_r} /boot/zImage
4202992 bytes read in 207 ms (19.4 MiB/s)
STM32MP> ext4load mmc 0:4 ${fdt_addr_r} /boot/stm32mp157a-dk1.dtb
53881 bytes read in 31 ms (1.7 MiB/s)

STM32MP> bootz ${kernel_addr_r} - ${fdt_addr_r}

Kernel image @ 0xc2000000 [ 0x000000 - 0x4021f0 ]
## Flattened Device Tree blob at c4000000

Booting using the fdt blob at 0xc4000000
Loading Device Tree to cffef000, end cffff278 ... OK

Starting kernel ...

[ 0.000000] Linux version 5.8.13 (thomas@windsurf) (arm-none-linux-gnueabihf-gcc....)
[ 0.000000] CPU: ARMv7 Processor [410fc075] revision 5 (ARMv7), cr=10c5387d
...
[ 0.000000] OF: fdt: Machine model: STMicroelectronics STM32MP157A-DK1 Discovery Board

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/56

 



Exploring the DT on the target

▶ In /sys/firmware/devicetree/base, there is a directory/file representation of
the Device Tree contents

# ls -l /sys/firmware/devicetree/base/
total 0
-r--r--r-- 1 root root 4 Jan 1 00:00 #address-cells
-r--r--r-- 1 root root 4 Jan 1 00:00 #size-cells
drwxr-xr-x 2 root root 0 Jan 1 00:00 chosen
drwxr-xr-x 3 root root 0 Jan 1 00:00 clocks
-r--r--r-- 1 root root 34 Jan 1 00:00 compatible
[...]
-r--r--r-- 1 root root 1 Jan 1 00:00 name
drwxr-xr-x 10 root root 0 Jan 1 00:00 soc

▶ If dtc is available on the target, possible to ”unpack” the Device Tree using:
dtc -I fs /sys/firmware/devicetree/base

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/56

 



Device Tree base syntax

▶ Tree of nodes
▶ Nodes with properties
▶ Node ≈ a device or IP block
▶ Properties ≈ device characteristics
▶ Notion of cells in property values
▶ Notion of phandle to point to other

nodes
▶ dtc only does syntax checking, no

semantic validation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/56

 



DT overall structure: simplified example

/ {
#address-cells = <1>;
#size-cells = <1>;
model = "STMicroelectronics STM32MP157C-DK2 Discovery Board";
compatible = "st,stm32mp157c-dk2", "st,stm32mp157";

cpus { ... };
memory@0 { ... };
chosen { ... };
intc: interrupt-controller@a0021000 { ... };
soc {
i2c1: i2c@40012000 { ... };
ethernet0: ethernet@5800a000 { ... };

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/56

 



DT overall structure: simplified example

/ {
cpus {

#address-cells = <1>;
#size-cells = <0>;
cpu0: cpu@0 {
compatible = "arm,cortex-a7";
clock-frequency = <650000000>;
device_type = "cpu";
reg = <0>;

};

cpu1: cpu@1 {
compatible = "arm,cortex-a7";
clock-frequency = <650000000>;
device_type = "cpu";
reg = <1>;

};
};

memory@0 { ... };
chosen { ... };
intc: interrupt-controller@a0021000 { ... };
soc {
i2c1: i2c@40012000 { ... };
ethernet0: ethernet@5800a000 { ... };

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/56

 



DT overall structure: simplified example

/ {
cpus { ... };
memory@0 {

device_type = "memory";
reg = <0x0 0x20000000>;

};

chosen {
bootargs = "";
stdout-path = "serial0:115200n8";

};
intc: interrupt-controller@a0021000 { ... };
soc {
i2c1: i2c@40012000 { ... };
ethernet0: ethernet@5800a000 { ... };

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/56

 



DT overall structure: simplified example

/ {
cpus { ... };
memory@0 { ... };
chosen { ... };

intc: interrupt-controller@a0021000 {
compatible = "arm,cortex-a7-gic";
#interrupt-cells = <3>;
interrupt-controller;
reg = <0xa0021000 0x1000>,

<0xa0022000 0x2000>;
};

soc {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
interrupt-parent = <&intc>;

i2c1: i2c@40012000 { ... };
ethernet0: ethernet@5800a000 { ... };

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/56

 



DT overall structure: simplified example

/ {
cpus { ... };
memory@0 { ... };
chosen { ... };
intc: interrupt-controller@a0021000 { ... };
soc {
i2c1: i2c@40012000 {

compatible = "st,stm32mp15-i2c";
reg = <0x40012000 0x400>;
interrupts = <GIC_SPI 31 IRQ_TYPE_LEVEL_HIGH>,

<GIC_SPI 32 IRQ_TYPE_LEVEL_HIGH>;
#address-cells = <1>;
#size-cells = <0>;
status = "okay";

cs42l51: cs42l51@4a {
compatible = "cirrus,cs42l51";
reg = <0x4a>;
reset-gpios = <&gpiog 9 GPIO_ACTIVE_LOW>;
status = "okay";

};
};
ethernet0: ethernet@5800a000 { ... };

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/56

 



DT overall structure: simplified example

/ {
cpus { ... };
memory@0 { ... };
chosen { ... };
intc: interrupt-controller@a0021000 { ... };
soc {
compatible = "simple-bus";
...
interrupt-parent = <&intc>;
i2c1: i2c@40012000 { ... };

ethernet0: ethernet@5800a000 {
compatible = "st,stm32mp1-dwmac", "snps,dwmac-4.20a";
reg = <0x5800a000 0x2000>;
interrupts-extended = <&intc GIC_SPI 61 IRQ_TYPE_LEVEL_HIGH>;
status = "okay";

mdio0 {
#address-cells = <1>;
#size-cells = <0>;
compatible = "snps,dwmac-mdio";
phy0: ethernet-phy@0 {

reg = <0>;
};

};
};

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/56

 



Device Tree inheritance

▶ Device Tree files are not monolithic, they can be split in several files, including
each other.

▶ .dtsi files are included files, while .dts files are final Device Trees
▶ Only .dts files are accepted as input to dtc

▶ Typically, .dtsi will contain
▶ definitions of SoC-level information
▶ definitions common to several boards

▶ The .dts file contains the board-level information
▶ The inclusion works by overlaying the tree of the including file over the tree of

the included file.
▶ Allows an including file to override values specified by an included file
▶ Uses the C pre-processor #include directive

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/56

 



Device Tree inheritance example

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/56

 



Inheritance and labels

Doing:

soc.dtsi
/ {
soc {
usart1: serial@5c000000 {
compatible = "st,stm32h7-uart";
reg = <0x5c000000 0x400>;
status = "disabled";

};
};

};

board.dts
#include "soc.dtsi"

/ {
soc {
serial@5c000000 {

status = "okay";
};

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/56

 



Inheritance and labels

Doing:

soc.dtsi
/ {
soc {
usart1: serial@5c000000 {
compatible = "st,stm32h7-uart";
reg = <0x5c000000 0x400>;
status = "disabled";

};
};

};

board.dts
#include "soc.dtsi"

/ {
soc {
serial@5c000000 {

status = "okay";
};

};
};

Is exactly equivalent to:

soc.dtsi
/ {

soc {
usart1: serial@5c000000 {
compatible = "st,stm32h7-uart";
reg = <0x5c000000 0x400>;
status = "disabled";

};
};

};

board.dts
#include "soc.dtsi"

&usart1 {
status = "okay";

};

→ this solution is now often preferred

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/56

 



DT inheritance in STM32MP1 support

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/56

 



Device Tree design principles

▶ Describe hardware (how the hardware is), not configuration (how I choose to
use the hardware)

▶ OS-agnostic
▶ For a given piece of HW, Device Tree should be the same for U-Boot, FreeBSD or

Linux
▶ There should be no need to change the Device Tree when updating the OS

▶ Describe integration of hardware components, not the internals of hardware
components
▶ The details of how a specific device/IP block is working is handled by code in device

drivers
▶ The Device Tree describes how the device/IP block is connected/integrated with the

rest of the system: IRQ lines, DMA channels, clocks, reset lines, etc.
▶ Like all beautiful design principles, these principles are sometimes violated.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/56

 



Device Tree specifications

▶ How to write the correct nodes/properties to describe a
given hardware platform ?

▶ DeviceTree Specifications → base Device Tree syntax
+ number of standard properties.
▶ https://www.devicetree.org/specifications/
▶ Not sufficient to describe the wide variety of hardware.

▶ Device Tree Bindings → documents that each specify
how a piece of HW should be described
▶ Documentation/devicetree/bindings/ in Linux

kernel sources
▶ Reviewed by DT bindings maintainer team
▶ Legacy: human readable documents
▶ New norm: YAML-written specifications

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/56

 

https://www.devicetree.org/specifications/


Device Tree binding: old style

Documentation/devicetree/bindings/mtd/spear_smi.txt
This IP is not used on STM32MP1.

* SPEAr SMI

Required properties:
- compatible : "st,spear600-smi"
- reg : Address range of the mtd chip
- #address-cells, #size-cells : Must be present if the device has sub-nodes

representing partitions.
- interrupts: Should contain the STMMAC interrupts
- clock-rate : Functional clock rate of SMI in Hz

Optional properties:
- st,smi-fast-mode : Flash supports read in fast mode

Example:

smi: flash@fc000000 {
compatible = "st,spear600-smi";
#address-cells = <1>;
#size-cells = <1>;
reg = <0xfc000000 0x1000>;
interrupt-parent = <&vic1>;
interrupts = <12>;
clock-rate = <50000000>; /* 50MHz */

flash@f8000000 {
st,smi-fast-mode;
...

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/56

 



Device Tree binding: YAML style

Documentation/devicetree/bindings/i2c/st,stm32-i2c.yaml

# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/i2c/st,stm32-i2c.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#

title: I2C controller embedded in STMicroelectronics STM32 I2C platform

maintainers:
- Pierre-Yves MORDRET <pierre-yves.mordret@st.com>

properties:
compatible:

enum:
- st,stm32f4-i2c
- st,stm32f7-i2c
- st,stm32mp15-i2c

reg:
maxItems: 1

interrupts:
items:

- description: interrupt ID for I2C event
- description: interrupt ID for I2C error

resets:
maxItems: 1

clocks:
maxItems: 1

dmas:
items:

- description: RX DMA Channel phandle
- description: TX DMA Channel phandle

...

clock-frequency:
description: Desired I2C bus clock frequency in Hz. If not specified,

the default 100 kHz frequency will be used.
For STM32F7, STM32H7 and STM32MP1 SoCs, if timing
parameters match, the bus clock frequency can be from
1Hz to 1MHz.

default: 100000
minimum: 1
maximum: 1000000

required:
- compatible
- reg
- interrupts
- resets
- clocks

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/56

 



Device Tree binding: YAML style example

examples:
- |
//Example 3 (with st,stm32mp15-i2c compatible on stm32mp)
#include <dt-bindings/interrupt-controller/arm-gic.h>
#include <dt-bindings/clock/stm32mp1-clks.h>
#include <dt-bindings/reset/stm32mp1-resets.h>

i2c@40013000 {
compatible = "st,stm32mp15-i2c";
#address-cells = <1>;
#size-cells = <0>;
reg = <0x40013000 0x400>;
interrupts = <GIC_SPI 33 IRQ_TYPE_LEVEL_HIGH>,

<GIC_SPI 34 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&rcc I2C2_K>;
resets = <&rcc I2C2_R>;
i2c-scl-rising-time-ns = <185>;
i2c-scl-falling-time-ns = <20>;
st,syscfg-fmp = <&syscfg 0x4 0x2>;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/56

 



Validating Device Tree in Linux

▶ dtc only does syntaxic validation
▶ YAML bindings allow to do semantic validation
▶ Linux kernel make rules:

▶ make dt_binding_check
verify that YAML bindings are valid

▶ make dtbs_check
validate DTs currently enabled against YAML bindings

▶ make DT_SCHEMA_FILES=Documentation/devicetree/bindings/trivial-
devices.yaml dtbs_check
validate DTs against a specific YAML binding

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/56

 



The compatible property

▶ Is a list of strings
▶ From the most specific to the less specific

▶ Describes the specific binding to which the node complies.
▶ It uniquely identifies the programming model of the device.
▶ Practically speaking, it is used by the operating system to find the appropriate

driver for this device.
▶ When describing real hardware, typical form is vendor,model
▶ Examples:

▶ compatible = "arm,armv7-timer";
▶ compatible = "st,stm32mp1-dwmac", "snps,dwmac-4.20a";
▶ compatible = "regulator-fixed";
▶ compatible = "gpio-keys";

▶ Special value: simple-bus → bus where all sub-nodes are memory-mapped
devices

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/56

 



compatible property and Linux kernel drivers

▶ Top-level DT nodes with a compatible
property and nodes that are sub-nodes of
simple-bus will cause Linux to identify those
devices as platform devices
▶ Instantiated automatically at boot time

▶ Sub-nodes of I2C controllers → I2C devices
▶ Sub-nodes of SPI controllers → SPI devices
▶ Each Linux driver has a table of compatible

strings it supports
▶ struct of_device_id []

▶ When a DT node compatible string matches a
given driver, the device is bound to that driver.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/56

 



Matching with drivers in Linux: platform driver

drivers/tty/serial/stm32-usart.c
static const struct of_device_id stm32_match[] = {

{ .compatible = "st,stm32-uart", .data = &stm32f4_info},
{ .compatible = "st,stm32f7-uart", .data = &stm32f7_info},
{ .compatible = "st,stm32h7-uart", .data = &stm32h7_info},
{},

};
MODULE_DEVICE_TABLE(of, stm32_match);

static struct platform_driver stm32_serial_driver = {
.probe = stm32_serial_probe,
.remove = stm32_serial_remove,
.driver = {

.name = DRIVER_NAME,

.pm = &stm32_serial_pm_ops,

.of_match_table = of_match_ptr(stm32_match),
},

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/56

 



Matching with drivers in Linux: I2C driver

sound/soc/codecs/cs42l51-i2c.c
const struct of_device_id cs42l51_of_match[] = {

{ .compatible = "cirrus,cs42l51", },
{ }

};
MODULE_DEVICE_TABLE(of, cs42l51_of_match);

static struct i2c_driver cs42l51_i2c_driver = {
.driver = {

.name = "cs42l51",

.of_match_table = cs42l51_of_match,

.pm = &cs42l51_pm_ops,
},
.probe = cs42l51_i2c_probe,
.remove = cs42l51_i2c_remove,
.id_table = cs42l51_i2c_id,

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/56

 



reg property

▶ Most important property after compatible
▶ Memory-mapped devices: base physical address and size of the memory-mapped

registers. Can have several entries for multiple register areas.

sai4: sai@50027000 {
reg = <0x50027000 0x4>, <0x500273f0 0x10>;

};

▶ I2C devices: address of the device on the I2C bus.
▶ SPI devices: chip select number
▶ The unit address must be the address of the first reg entry.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/56

 



reg property
▶ Most important property after compatible
▶ Memory-mapped devices: base physical address and size of the memory-mapped

registers. Can have several entries for multiple register areas.
▶ I2C devices: address of the device on the I2C bus.

&i2c1 {
hdmi-transmitter@39 {

reg = <0x39>;
};
cs42l51: cs42l51@4a {

reg = <0x4a>;
};

};

▶ SPI devices: chip select number
▶ The unit address must be the address of the first reg entry.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/56

 



reg property
▶ Most important property after compatible
▶ Memory-mapped devices: base physical address and size of the memory-mapped

registers. Can have several entries for multiple register areas.
▶ I2C devices: address of the device on the I2C bus.
▶ SPI devices: chip select number

&qspi {
flash0: mx66l51235l@0 {

reg = <0>;
};
flash1: mx66l51235l@1 {

reg = <1>;
};

};

▶ The unit address must be the address of the first reg entry.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/56

 



reg property

▶ Most important property after compatible
▶ Memory-mapped devices: base physical address and size of the memory-mapped

registers. Can have several entries for multiple register areas.
▶ I2C devices: address of the device on the I2C bus.
▶ SPI devices: chip select number
▶ The unit address must be the address of the first reg entry.

sai4: sai@50027000 {
reg = <0x50027000 0x4>, <0x500273f0 0x10>;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/56

 



Cells concept

▶ Integer values represented as 32-bit integers
called cells

▶ Encoding a 64-bit value requires two cells
▶ #address-cells and #size-cells: how

many cells are used in sub-nodes to encode the
address and size in the reg property

▶ #interrupts-cells: how many cells are used
to encode interrupt specifiers for this interrupt
controller

▶ Ditto #clock-cells, #gpio-cells,
#phy-cells, #pwm-cells, #dma-cells, etc.

soc {
/* This property has 1 cell */
foo = <0xdeadbeef>;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/56

 



Cells concept

▶ Integer values represented as 32-bit integers
called cells

▶ Encoding a 64-bit value requires two cells

▶ #address-cells and #size-cells: how
many cells are used in sub-nodes to encode the
address and size in the reg property

▶ #interrupts-cells: how many cells are used
to encode interrupt specifiers for this interrupt
controller

▶ Ditto #clock-cells, #gpio-cells,
#phy-cells, #pwm-cells, #dma-cells, etc.

soc {
/* This property has 2 cells */
foo = <0xdeadbeef 0xbadcafe>;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/56

 



Cells concept

▶ Integer values represented as 32-bit integers
called cells

▶ Encoding a 64-bit value requires two cells
▶ #address-cells and #size-cells: how

many cells are used in sub-nodes to encode the
address and size in the reg property

▶ #interrupts-cells: how many cells are used
to encode interrupt specifiers for this interrupt
controller

▶ Ditto #clock-cells, #gpio-cells,
#phy-cells, #pwm-cells, #dma-cells, etc.

soc {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;

i2c@f1001000 {
reg = <0xf1001000 0x1000>;
#address-cells = <1>;
#size-cells = <0>;

eeprom@52 {
reg = <0x52>;

};
};

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/56

 



Cells concept

▶ Integer values represented as 32-bit integers
called cells

▶ Encoding a 64-bit value requires two cells
▶ #address-cells and #size-cells: how

many cells are used in sub-nodes to encode the
address and size in the reg property

▶ #interrupts-cells: how many cells are used
to encode interrupt specifiers for this interrupt
controller

▶ Ditto #clock-cells, #gpio-cells,
#phy-cells, #pwm-cells, #dma-cells, etc.

soc {
intc: interrupt-controller@f1002000 {

compatible = "foo,bar-intc";
reg = <0xf1002000 0x1000>;
interrupt-controller;
#interrupt-cells = <2>;

};

i2c@f1001000 {
interrupt-parent = <&intc>;
/* Must have two cells */
interrupts = <12 24>;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/56

 



Cells concept

▶ Integer values represented as 32-bit integers
called cells

▶ Encoding a 64-bit value requires two cells
▶ #address-cells and #size-cells: how

many cells are used in sub-nodes to encode the
address and size in the reg property

▶ #interrupts-cells: how many cells are used
to encode interrupt specifiers for this interrupt
controller

▶ Ditto #clock-cells, #gpio-cells,
#phy-cells, #pwm-cells, #dma-cells, etc.

soc {
clkc: clock@f1003000 {

compatible = "foo,bar-clock";
reg = <0xf1003000 0x1000>;
#clock-cells = <3>;

};

i2c@f1001000 {
/* Must have three cells */
clocks = <&clkc 12 24 32>;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/56

 



Status property

▶ status property indicates if the device is really in use or not
▶ okay or ok → the device is really in use
▶ any other value, by convention disabled → the device is not in used

▶ In Linux, controls if a device is instantiated
▶ In .dtsi files describing SoCs: all devices that interface to the outside world have

status = disabled
▶ Enabled on a per-device basis in the board .dts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/56

 



Interrupt description

▶ Nodes describing interrupt
controllers
▶ Devices like any other
▶ interrupt-controller boolean

▶ Devices using interrupts:
▶ interrupts + interrupt-parent,

interrupts specifies the interrupt
number and flags,
interrupt-parent the interrupt
controller, searched recursively in the
parent nodes

▶ interrupts-extended specifies the
interrupt controller, interrupt
number and flags

/ {
intc: interrupt-controller@a0021000 {

compatible = "arm,cortex-a7-gic";
#interrupt-cells = <3>;
interrupt-controller;
reg = <0xa0021000 0x1000>,

<0xa0022000 0x2000>;
};

soc {
interrupt-parent = <&intc>;
spi2: spi@4000b000 {

interrupts = <GIC_SPI 36 IRQ_TYPE_LEVEL_HIGH>;
...

};

ipcc: mailbox@4c001000 {
interrupts-extended =

<&intc GIC_SPI 100 IRQ_TYPE_LEVEL_HIGH>,
<&intc GIC_SPI 101 IRQ_TYPE_LEVEL_HIGH>,
<&exti 61 1>;

...
};

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/56

 



Other resources: clocks, DMA, reset lines, ...

▶ Similar pattern for other resources
shared by multiple hardware blocks
▶ Clock controllers
▶ DMA controllers
▶ Reset controllers
▶ ...

▶ A Device Tree node descriving the
controller as a device

▶ References from other nodes that use
resources provided by this controller

rcc: rcc@50000000 {
compatible = "st,stm32mp1-rcc", "syscon";
reg = <0x50000000 0x1000>;
#clock-cells = <1>;
#reset-cells = <1>;

};

dmamux1: dma-router@48002000 {
compatible = "st,stm32h7-dmamux";
reg = <0x48002000 0x1c>;
#dma-cells = <3>;
dma-requests = <128>;
dma-masters = <&dma1 &dma2>;
dma-channels = <16>;
clocks = <&rcc DMAMUX>;
resets = <&rcc DMAMUX_R>;

};

spi3: spi@4000c000 {
...
clocks = <&rcc SPI3_K>;
resets = <&rcc SPI3_R>;
dmas = <&dmamux1 61 0x400 0x05>,

<&dmamux1 62 0x400 0x05>;
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/56

 



-names properties

▶ Some properties are associated to a corresponding <prop>-names property
▶ Gives some human-readable names to entries of the corresponding <prop>

properties

interrupts = <0 59 0>, <0 70 0>;
interrupt-names = "macirq", "macpmt";
clocks = <&car 39>, <&car 45>, <&car 86>, <&car 87>;
clock-names = "gnssm_rgmii", "gnssm_gmac", "rgmii", "gmac";

▶ Such names can be typically be used by the driver
▶ platform_get_irq_byname(pdev, "macirq");

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/56

 



Pin-muxing description

▶ Most modern SoCs, including the
STM32MP1, have more features than
they have pins to expose those
features to the outside world.

▶ Pins are muxed: a given pin can be
used for one function or another

▶ A specific IP block in the SoC controls
the muxing of pins: the pinmux
controller

▶ The Device Tree describes which pin
configurations are possible, and which
configurations are used by the
different devices.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/56

 



Pin-muxing controllers on STM32MP1

arch/arm/boot/dts/stm32mp151.dtsi
pinctrl: pin-controller@50002000 {

#address-cells = <1>;
#size-cells = <1>;
compatible = "st,stm32mp157-pinctrl";

gpioa: gpio@50002000 { ... };
gpiob: gpio@50003000 { ... };
gpioc: gpio@50004000 { ... };
gpiod: gpio@50005000 { ... };
gpioe: gpio@50006000 { ... };
gpiof: gpio@50007000 { ... };
...

};

pinctrl_z: pin-controller-z@54004000 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "st,stm32mp157-z-pinctrl";
ranges = <0 0x54004000 0x400>;

gpioz: gpio@54004000 { .... };
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/56

 



Pin-muxing configuration

arch/arm/boot/dts/stm32mp151.dtsi
&pinctrl {

i2c1_pins_a: i2c1-0 {
pins {

pinmux = <STM32_PINMUX('D', 12, AF5)>, /* I2C1_SCL */
<STM32_PINMUX('F', 15, AF5)>; /* I2C1_SDA */

bias-disable;
drive-open-drain;
slew-rate = <0>;

};
};

m_can1_pins_a: m-can1-0 {
pins1 {

pinmux = <STM32_PINMUX('H', 13, AF9)>; /* CAN1_TX */
slew-rate = <1>;
drive-push-pull;
bias-disable;

};
pins2 {

pinmux = <STM32_PINMUX('I', 9, AF9)>; /* CAN1_RX */
bias-disable;

};
};

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/56

 



Pin-muxing configuration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/56

 



Pin-muxing consumer

&i2c1 {
pinctrl-names = "default", "sleep";
pinctrl-0 = <&i2c1_pins_a>;
pinctrl-1 = <&i2c1_sleep_pins_a>;
...

};

▶ Typically board-specific, in .dts
▶ pinctrl-0, pinctrl-1, pinctrl-X provides the pin mux configurations for the

different states
▶ pinctrl-names gives a name to each state, mandatory even if only one state
▶ States are mutually exclusive
▶ Driver is responsible for switching between states
▶ default state is automatically set up when the device is probed

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/56

 



Example: LED and I2C device

▶ Let’s see how to describe an LED and an I2C device connected to the DK1
platform.

▶ Create arch/arm/boot/dts/stm32mp157a-dk1-custom.dts which includes
stm32mp157a-dk1.dts

#include "stm32mp157a-dk1.dts"

▶ Make sure stm32mp157a-dk1-custom.dts gets compiled to a DTB by changing
arch/arm/boot/dts/Makefile

dtb-$(CONFIG_ARCH_STM32) += \
...
stm32mp157a-dk1.dtb \
stm32mp157a-dk1-custom.dtb

▶ make dtbs
DTC arch/arm/boot/dts/stm32mp157a-dk1-custom.dtb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/56

 



Example: describe an LED

stm32mp157a-dk1-custom.dts
#include "stm32mp157a-dk1.dts"

/ {
leds {

compatible = "gpio-leds";
webinar {

label = "webinar";
gpios = <&gpioe 1 GPIO_ACTIVE_HIGH>;

};
};

};

shell
# echo 255 > /sys/class/leds/webinar/brightness

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/56

 



Example: connect I2C sensor

stm32mp157a-dk1-custom.dts
&i2c5 {

status = "okay";
clock-frequency = <100000>;
pinctrl-names = "default", "sleep";
pinctrl-0 = <&i2c5_pins_a>;
pinctrl-1 = <&i2c5_pins_sleep_a>;

pressure@76 {
compatible = "bosch,bme280";
reg = <0x76>;

};
};

shell
# cat /sys/bus/iio/devices/iio:device2/in_temp_input
24380

Details at https://bootlin.com/blog/building-a-linux-system-for-the-
stm32mp1-connecting-an-i2c-sensor/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/56

 

https://bootlin.com/blog/building-a-linux-system-for-the-stm32mp1-connecting-an-i2c-sensor/
https://bootlin.com/blog/building-a-linux-system-for-the-stm32mp1-connecting-an-i2c-sensor/


There’s more !

▶ Lots of Device Tree topics not covered in this talk
▶ range property for address translation
▶ Complex Device Tree bindings

▶ Audio, display, camera devices
▶ PCIe

▶ Linux kernel API for DT
▶ U-Boot tooling for DT manipulation
▶ DT overlays
▶ etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/56

 



Resources

▶ Device Tree specifications
https://www.devicetree.org/

▶ Device Tree bindings
https://elixir.bootlin.com/linux/latest/source/Documentation/
devicetree/bindings

▶ Device Tree for Dummies talk
https://www.youtube.com/watch?v=uzBwHFjJ0vU

▶ eLinux.org wiki page on Device Tree
https://elinux.org/Device_Tree_Reference

▶ Numerous Device Tree talks at the Embeded Linux Conference
https://elinux.org/Device_Tree_Presentations

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/56

 

https://www.devicetree.org/
https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings
https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings
https://www.youtube.com/watch?v=uzBwHFjJ0vU
https://elinux.org/Device_Tree_Reference
https://elinux.org/Device_Tree_Presentations


Conclusion: about the Device Tree

▶ Representation of non-discoverable
hardware

▶ Tree of nodes, with properties
▶ Standardization based on Device

Tree bindings
▶ New description language with lots of

properties and sometimes complex
bindings

▶ Used for numerous CPU architectures
▶ Now widely used outside of Linux
▶ A must know for all embedded Linux

developers!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/56

 



Conclusion: about Bootlin

▶ Expertise in embedded Linux
▶ Training
▶ Engineering services
▶ Linux BSP development
▶ Kernel drivers
▶ Open-source contributor
▶ Contact us!
▶ info@bootlin.com

Thanks to ST for supporting this webinar!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/56

 



Questions ?

https://bootlin.com

Slides at https://bootlin.com/pub/conferences/2021/webinar/petazzoni-device-tree-101/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/56

https://bootlin.com
https://bootlin.com/pub/conferences/2021/webinar/petazzoni-device-tree-101/

