Device Tree 101

Organized in partnership with ST
February 9, 2021

Thomas Petazzoni
thomas.petazzoni@bootlin.com

© Copyright 2004-2021, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

bootlin

| embedded Linux and kemel engineering
IR e ey P

Authorized
Partner

£y

vvyyy

Thomas Petazzoni
Chief Technical Officer at Bootlin

Joined in 2008, employee #1

Embedded Linux & Linux kernel engineer,
open-source contributor

» Author of the Device Tree for Dummies talk in
2013/2014
» Buildroot co-maintainer
» Linux kernel contributor: =~ 900 contributions
Member of Embedded Linux Conference
(Europe) program committee

Based in Toulouse, France

Bootlin introduction

STM32MP1 introduction

Why the Device Tree ?

Basic Device Tree syntax

Device Tree inheritance

Device Tree specifications and bindings

Device Tree and Linux kernel drivers

vVVvyVvyVvVvVvyVvYVvYyyYy

Common properties and examples

» In business since 2004

» Team based in France
» Serving customers worldwide
> 18% revenue from France
» 44% revenue from EU except France
> 38% revenue outside EU
» Highly focused and recognized expertise
> Embedded Linux
> Linux kernel
» Embedded Linux build systems
» Activities
> Training courses (~ 20% revenue)
> Engineering services (~ 80% revenue)

bootlin

Authorized
Partner

£y

» Complete training materials freely available
» Open-source license: Creative Commons
» Allows to verify in detail the course contents
» Shows Bootlin commitment to knowledge sharing
» Unique in the training industry

@) DG

» Complete training materials freely available
» Open-source license: Creative Commons
» Allows to verify in detail the course contents
» Shows Bootlin commitment to knowledge sharing
» Unique in the training industry

» Experienced trainers

» Bootlin trainers are also engineers
» Working on real engineering projects
» Up-to-date and in-field experience

» Complete training materials freely available
» Open-source license: Creative Commons
» Allows to verify in detail the course contents
» Shows Bootlin commitment to knowledge sharing
» Unique in the training industry

» Experienced trainers

» Bootlin trainers are also engineers
» Working on real engineering projects
» Up-to-date and in-field experience

» Worldwide recognized training courses

» Taught 100s of sessions
> To 1000s of engineers
» For the past 15 years

» Main activities

» Linux Board Support Package development, update
and maintenance

» Linux kernel drivers development

» Bootloader and Linux kernel porting

» System integration: Yocto, Buildroot, boot time, secure
boot, etc.

»> Upstreaming

» Consulting and technical support

» Focus on the low-level software stack

» Customers
» Silicon vendors: interested in U-Boot, Linux, Buildroot
or Yocto support for their product, usually upstream
> Embedded system manufacturers: complete BSP,
specific drivers, debugging, optimization, consulting

v

vVvyyvyy

Bootlin 20th contributing company worldwide to the
Linux kernel

7600+ patches contributed, mainly around hardware

support

Maintainers of several subsystems of the kernel: 13C,
RTC, MTD, and several platforms

Key contributor to Buildroot: co-maintainer, 5000+
patches contributed

Contributor to the Yocto Project
Contributions to Barebox, Linux Test Project, etc.
Freely available training materials

Numerous talks at conferences to share technical

knowledge

No.1 Unknown

No.2 Intel

No.3 Red Hat

No.4 Hobbyists

No.5 Novell

No.6 IBM

No.7 Linaro

No.8 AMD

No.9 Google

No.10 Renesas Electronics
No.11 Oracle

No.12 Samsung

No.13 Texas Instruments
No.14 HuaWei

No.15 Mellanox Technologies
\RM

No.16 Al

No.17 Academics
No.18 Consultants
No.19 Broadcom

140019 (15, 26%)
94806 (10.33%)
78140(8.52%)
73603 (8.02%)
39218(4.27%)
35085 (3.82%)
28288(3.08%)
22426(2.44%)
20489(2.23%)
18443(2.01%)
17729(1.93%)
17514(1.91%)
16372(1.78%)
13377(1.46%)
11477(1.25%)
8919(0.97%
8560(0.93%
8073(0.88%
8011(0.87%

7611(0.83%

O

No.20 Bootlin
No.21 NXP

No.22 Linutronix

No.23 NVIDIA

No.24 Canonical

No.25 Linux Foundation
No.26 Code Aurora Forum
No.27 Pengutronix

No.28 VISION Engraving and Routing Sys

No.29 Analog Devices
No.30 Fujitsu

No.31 QUALCOMM
No.32 Freescale

No.33 Wolfson Microelectronics

No.34 Marvell
No.35 Nokia
No.36 Cisco
No.37 Parallels

No.38 Imagination Technologies
K

No.39 Facebool
No.46 QLogic
No.41 ST Microelectronics
No.42 Astaro
No.43 NetApp

7549(0.82%
7430(0.81%
6951(0.76%
6855(0.75%
6369(0.69%
6280(0.68%
6201(0.68%
tems6045 (0. 66%)
5944(0.65%
5120(0.56%
4903(0.53%
4694(0.51%
4180(0.46%
4178(0.46%
4097(0.45%
4071(0.44%
3841(0.42%
3774(0.41%
3484(0.38%
3394(0.37%
3188(0.35%
2981(0.32%
2860(0.31%

System

Crystal & Internal oscillators
MDMA + 2xDMA
Reset and Clock
Watchdogs (2x1 & W)
‘96-bit unique ID

&
=
(=]

Up to 176 GPIOs

Security

TrustZone

=
m

DES, TDES, AES-256

%]

HA-256, MDS, HMAC

3x Tamper Pins with 1 active

T°,Vand 32KHz detection
Secure ROM and RAMs

Secure Peripherals

Secure RTC

Analogtrue RNG

’

STM32MP157F
Dual Cortex-A7 @ 800MHz
L132KB1/32KB D L1 32KB 1/ 32KB D

Cortex-M4 @ 209MHz
FPU MPU

NEON SIMD

DDR3/DDR3L 32-bit@ 533MHz
LPDDR2/LPDDR3 32-bit @ 533MHz

Retention RA

Boot ROM OTP Fus

Control

2x 16-bit motor control PWM synchronized AC timer
10 16-bit timer Sx 16-bit LP timer

2x 32-bit timer

3D GPU OpenGL ES2.0 @ 533MHz

26Mtrilsec, 133Mpix/sec

Connectivity

24-bit Paralel RGB Display
Camera Interface
1Gbps Ethernet

2x USB2.0 HostHS

BxPRC
Bx 5P /3xFS

SPDIF Tx/Rx 4 inputs

3xSDI03.0 /SD3 /eMMC 4.51

Analog

2% 16-bit ADC
2% 12-bit DAC

STM32MP1 Series
Arm® Cortex®-A7 - up to 800 MHz

Product lines

Cortex®-A7 core
Cortex®-M4 core
HW Crypto
MIPI®-DSI
Junction temperature

MDMA + DMA
LPDDR2/LPDDRS 1

USB2.0 OTG FSHS
MMC/SDIO
ART, UART, SPI,
(TT)FD-CANZ.0*
Gigabit Ethemet [EEE 15
FMC (NAND Flash)
Camera I/F

Dual mode Quad-SPI
DSI2 Gbit/s*

otes:
* Not avalable i a provuct ines

** 16/32-bit for LFBGA448 and TFBGA3E1 packages, 16-bit only for LFBGA354 and TFBGA2ST packages
=+ 10100M Etheret ony or LFBGA54 anc TFBGAZS packages

» Discovery Kit 1 (DK1) » Discovery Kit 2 (DK2)

» SoC: STM32MP157A » SoC: STM32MP157C

» 512 MB DDR, microSD » Same as DK1

> 1G Ethernet, 1x USB-C, 4x USB-A, LEDs, » WiFi/Bluetooth
buttons » Display + touchscreen

» HDMI, audio codec, DSI connector

» GPIO connectors, Arduino/RaspberryPi

shields
» On-board ST-Link

Y

Ethernet o .
PHY WiFi microSD
A A A
Ethernet
GPIO MAC MMC 3 MMCO GPU
SRl CPU cores Timers DDR . o DDR
PWM controller memory
Touchscreen IRQ clock Display
controller P controller controller AR DSl > panel
HDMI SAl 12s LTDC Crypto 2C4 <> PMIC
transceiver
A A A
o STM32MP157C
codec

» Some hardware busses provide discoverability mechanisms
> E.g: PCl(e), USB
» One does not need to know ahead of time what will be connected on these busses
» Devices can be enumerated and identified at runtime
» Concept of vendor ID, product ID, device class, etc.

» Some hardware busses provide discoverability mechanisms
> E.g: PCl(e), USB
» One does not need to know ahead of time what will be connected on these busses
» Devices can be enumerated and identified at runtime
» Concept of vendor ID, product ID, device class, etc.
» But many hardware busses do not provide discoverability mechanisms
» E.g: 12C, SPI, 1-wire, memory-mapped, etc.
» One needs to know what is connected on those busses, and how they are connected
to the rest of the system
» Embedded systems typically make extensive use of such busses

Allows the operating system or bootloader to know things like:
» This system-on-chip has:
» 2 Cortex-A7 CPU cores
» 2 memory-mapped UART controllers of this variant, one with registers at
0x5c000000 and IRQ 37, and another with registers at 0x4000e000 and IRQ 38
» 3 12C controllers of that variant, with registers at those memory-mapped addresses,
those IRQs and taking their input clock from this source

» This board has a CS42L51 audio codec

» Connected on the I12C bus 1 of the SoC, at slave address 0x4A
» Connected to the SAl interface 2 of the SoC
» With its reset signal connected to GPIO 67 of the SoC

> ...

— These details cannot be guessed by the operating system/bootloader.

1. Directly in the » Using compiled data structures, typically in C
0S/bootloader » How it was done on most embedded platforms in Linux,
code U-Boot.

» Considered not maintainable/sustainable on ARM32,
which motivated the move to another solution.

» On x86 systems, but also on a subset of ARM64
platforms

2. Using ACPI tables » Tables provided by the firmware

3. Using a Device Tree

Originates from OpenFirmware, defined by Sun, used
on SPARC and PowerPC

> That's why many Linux/U-Boot functions related to
DT have a of _ prefix
Now used most embedded-oriented CPU architectures
that run Linux: ARC, ARM64, RISC-V, ARM32,
PowerPC, Xtensa, MIPS, etc.
Writing /tweaking a DT is now always necessary when
porting Linux to a new board.

The topic of this talk !

» A tree data structure describing the hardware is written

by a developer in a Device Tree Source file, .dts Device Tree Source
» Processed by the Device Tree Compiler, dtc .dts
» Produces a more efficient representation: Device Tree I
Blob, .dtb
» Additional C preprocessor pass Device Tree Compiler
» .dtb — accurately describes the hardware platform in dtc
an OS-agnostic way. *
» .dtb ~ few dozens of kilobytes
» DTB also called FDT, Flattened Device Tree, once Device Tree Blob
loaded into memory. dtb
» fdt command in U-Boot
> fdt_ APlIs

%

$ cat foo.dts

/dts-vi/;
/1
welcome = <OxBADCAFE>;
bootlin {
webinar = "great";
demo = <1>, <2>, <3>;
15
s

%

$ cat foo.dts
/dts-vi/;

/1
welcome = <OxBADCAFE>;
bootlin {
webinar = "great";
demo = <1>, <2>, <3>;
g
I

$ dtc -I dts -0 dtb -o foo.dtb foo.dts

$ 1s -1 foo.dtx*

-rw-r--r—-- 1 thomas thomas 169 ... foo.dtb
-rw-r--r—-— 1 thomas thomas 102 ... foo.dts

%

$ cat foo.dts
/dts-vi/;

/1
welcome = <OxBADCAFE>;
bootlin {
webinar = "great";
demo = <1>, <2>, <3>;
g
I

$ dtc -I dts -0 dtb -o foo.dtb foo.dts
$ 1s -1 foo.dtx*

-rw-r--r-- 1 thomas thomas 169 ...
-rw-r--r—-— 1 thomas thomas 102 ...

foo.dtb
foo.dts

$ dtc -I dtb -0 dts foo.dtb
/dts-v1/;

/A

welcome = <Oxbadcafe>;

bootlin {

webinar = "great";

demo = <0x01 0x02 0x03>;
g

» Can be linked directly inside a bootloader RAM

binary
» For example: U-Boot, Barebox

» Can be passed to the operating system by the
bootloader Kernel
»> Most common mechanism for the Linux kernel code
» U-Boot: +
bootz <kernel-addr> - <dtb-addr> CEIZ)
> The DTB address is passed through a kerneloaddrs —— 3
dedicated CPU register to the kernel: r2 on
ARM32 DTB
» Bootloader can adjust the DTB before passing otbradirm >
it to the kernel

» The DTB parsing can be done using 1ibfdt,
or ad-hoc code

» Even though they are OS-agnostic, no central and OS-neutral place to host
Device Tree sources and share them between projects

» Often discussed, never done

» In practice, the Linux kernel sources can be considered as the canonical location
for Device Tree Source files
» arch/<ARCH>/boot/dts
» =~ 4700 Device Tree Source files in Linux as of 5.10
» Duplicated/synced in various projects
» U-Boot, Barebox, TF-A

> 1st stage: TF-A

» DT in fdts/stm32mp157a-dkl.dts
» Build with PLAT=stm32mp1 DTB_FILE_NAME=stm32mp157a-dkl.dtb
» Bundles the DTB in the resulting tf-a-stm32mp157a-dkl.stm32

> 2nd stage: U-Boot

» DT in arch/arm/dts/stm32mp157a-dkl.dts
» Configure with stm32mp15_trusted_defconfig
» Build with DEVICE_TREE=stm32mp157a-dk1l

» Bundles the DTB in the resulting u-boot.stm32

» OS: Linux kernel

DT in arch/arm/boot/dts/stm32mp157a-dkl.dts
Configure with multi_v7_defconfig

Build

Kernel image: arch/arm/boot/zImage, DTB:
arch/arm/boot/dts/stm32mp157a-dkl.dtb

U-Boot 2020.07 (Feb 04 2021 - 16:27:10 +0100)
CPU: STM32MP157AAC Rev.B
Model: STMicroelectronics STM32MP157A-DK1 Discovery Board

U-Boot 2020.07 (Feb 04 2021 - 16:27:10 +0100)
CPU: STM32MP157AAC Rev.B
Model: STMicroelectronics STM32MP157A-DK1 Discovery Board

STM32MP> printenv kernel_addr_r
kernel_addr_r=0xc2000000
STM32MP> printenv fdt_addr_r
fdt_addr_r=0xc4000000

U-Boot 2020.07 (Feb 04 2021 - 16:27:10 +0100)
CPU: STM32MP157AAC Rev.B
Model: STMicroelectronics STM32MP157A-DK1 Discovery Board

STM32MP> printenv kernel_addr_r
kernel_addr_r=0xc2000000
STM32MP> printenv fdt_addr_r
fdt_addr_r=0xc4000000

STM32MP> ext4load mmc 0:4 ${kernel_addr_r} /boot/zImage

4202992 bytes read in 207 ms (19.4 MiB/s)

STM32MP> ext4load mmc 0:4 ${fdt_addr_r} /boot/stm32mp157a-dki.dtb
53881 bytes read in 31 ms (1.7 MiB/s)

U-Boot 2020.07 (Feb 04 2021 - 16:27:10 +0100)
CPU: STM32MP157AAC Rev.B
Model: STMicroelectronics STM32MP157A-DK1 Discovery Board

STM32MP> printenv kernel_addr_r
kernel_addr_r=0xc2000000
STM32MP> printenv fdt_addr_r
fdt_addr_r=0xc4000000

STM32MP> ext4load mmc 0:4 ${kernel_addr_r} /boot/zImage

4202992 bytes read in 207 ms (19.4 MiB/s)

STM32MP> ext4load mmc 0:4 ${fdt_addr_r} /boot/stm32mp157a-dki.dtb
53881 bytes read in 31 ms (1.7 MiB/s)

STM32MP> bootz ${kernel_addr_r} - ${fdt_addr_r}

U-Boot 2020.07 (Feb 04 2021 - 16:27:10 +0100)
CPU: STM32MP157AAC Rev.B
Model: STMicroelectronics STM32MP157A-DK1 Discovery Board

STM32MP> printenv kernel_addr_r
kernel_addr_r=0xc2000000
STM32MP> printenv fdt_addr_r
fdt_addr_r=0xc4000000

STM32MP> ext4load mmc 0:4 ${kernel_addr_r} /boot/zImage

4202992 bytes read in 207 ms (19.4 MiB/s)

STM32MP> ext4load mmc 0:4 ${fdt_addr_r} /boot/stm32mp157a-dki.dtb
53881 bytes read in 31 ms (1.7 MiB/s)

STM32MP> bootz ${kernel_addr_r} - ${fdt_addr_r}

Kernel image @ 0xc2000000 [0x000000 - 0x4021f0]
Flattened Device Tree blob at c4000000

Booting using the fdt blob at 0xc4000000
Loading Device Tree to cffef000, end cffff278 ... 0K

Starting kernel ...

[
[

t..

0.000000] Linux version 5.8.13 (thomas@windsurf) (arm-none-linux-gnueabihf-gcc....)
0.000000] CPU: ARMv7 Processor [410fc075] revision 5 (ARMv7), cr=10c5387d

0.000000] OF: fdt: Machine model: STMicroelectronics STM32MP157A-DK1 Discovery Board

» In /sys/firmware/devicetree/base, there is a directory/file representation of
the Device Tree contents

1s -1 /sys/firmware/devicetree/base/

total O

Tt 1 root root 4 Jan 1 00:00 #address-cells
o Ta 1 root root 4 Jan 1 00:00 #size-cells
drwxr-xr-x 2 root root 0 Jan 1 00:00 chosen
drwxr-xr-x 3 root root 0 Jan 1 00:00 clocks

STES TS BES 1 root root 34 Jan 1 00:00 compatible
[...]

Sip==ir==ir== 1 root root 1 Jan 1 00:00 name
drwxr-xr-x 10 root root 0 Jan 1 00:00 soc

» If dtc is available on the target, possible to "unpack” the Device Tree using:
dtc -I fs /sys/firmware/devicetree/base

vVvyVvYyVvyYyvyy

v

Tree of nodes

Nodes with properties

Node = a device or IP block
Properties & device characteristics
Notion of cells in property values
Notion of phandle to point to other
nodes

dtc only does syntax checking, no
semantic validation

Node name
Unit address
Property name
r Property value

{
node@d {
a-string-property = "A string";
a-string-list-property = "first string", "second string";
a-byte-data-property = [0x01 0x23 0x34 0x56];

L Bytestring

Properties of node@0

child-node@® {
first-child-property;
second-child-property = <1>;
a-reference-to-something = <&nodel>;

b
q A phandle,
ClENCHIEE (reference to another node)
Label h
i
nodel: node@l {
an-empty-property;
a-cell-property = <1 2 3 4>;
child-node@® { / ‘
}i Four cells (32 bits values)
b
i

/A
#address-cells = <1>;
#size-cells = <1>;
model = "STMicroelectronics STM32MP157C-DK2 Discovery Board";
compatible = "st,stm32mp157c-dk2", "st,stm32mp157";

System-on-chip

CPU cores

Cortex A7 Cortex A7

GIC
IRQ controller

cpus { ... };
memory@0 { ... };
chosen { ... }; I
intc: interrupt-controller@a0021000 { ... };
soc {) ST ST DDR
i2cl: i2c040012000 { ... }; Ethernet MAC = 12C controller controller
ethernet0: ethernet@58002000 { ... };
) }; | | |
; | | |
CS42L51
Ethernet " DDR
audio
PHY memory
codec

/

45

{
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu0: cpu@0 {
compatible = "arm,cortex-a7";
clock-frequency = <650000000>;
device_type = "cpu';

reg = <0>;
};
cpul: cpu@l {
compatible = "arm,cortex-a7";
clock-frequency = <650000000>;
device_type = "cpu";
reg = <1>;
};
};
memory@ { ... };
chosen { ... };
intc: interrupt-controller@a0021000 { ... };
soc {
i2c1: i2c40012000 { ... };
ethernet0: ethernet@5800a000 { ... };
}

System-on-chip

Cortex A7

CPU cores

Cortex A7

GIC
IRQ controller

ST ST DDR
Ethernet MAC 12C controller controller
| | |
Ethernet CS42I.'51 DDR
audio
PHY memory
codec

%

/A
cpus { ... };
memory@0 {
device_type = "memory";
reg = <0x0 0x20000000>;
};
chosen {
bootargs = "";
stdout-path = "serial0:115200n8";
};
intc: interrupt-controller@a0021000 { ... };
soc {
i2cl: i2c040012000 { ... };
ethernet0: ethernet@5800a000 { ... };
};
};

System-on-chip

CPU cores

Cortex A7 Cortex A7

GIC
IRQ controller

ST ST DDR
Ethernet MAC 12C controller controller
i i i
Ethernet | | 34251 DDR
audio
PHY memory
codec

/1
cpus { ... };
memory@0 { ... };
chosen { ... };

intc: interrupt-controller@a0021000 {
compatible = "arm,cortex-a7-gic";
#interrupt-cells = <3>;
interrupt-controller;
reg = <0xa0021000 0x1000>,
<0xa0022000 0x2000>;
};

soc {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
interrupt-parent = <&intc>;

i2c1: i2c@40012000 { ... };
ethernet0: ethernet©58002000 { ... };
};
};

System-on-chip

CPU cores

Cortex A7 Cortex A7

GIC
IRQ controller

ST ST DDR
Ethernet MAC 12C controller controller
| | |
Ethernet | | 34251 DDR
audio
PHY memory
codec

/ {

cpus { ... };

memory@0 { ... };

chosen { ... };

intc: interrupt-controller@a0021000 { ... };

soc {

i2c1: i2c@40012000 {
compatible = "st,stm32mp15-i2c";
reg = <0x40012000 0x400>;
interrupts = <GIC_SPI 31 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 32 IRQ_TYPE_LEVEL_HIGH>;

#address-cells = <1>;
#size-cells = <0>;
status = "okay";

cs42151: cs4215104a {
compatible = "cirrus,cs42151";
reg = <Ox4a>;
reset-gpios = <&gpiog 9 GPIO_ACTIVE_LOW>;
status = "okay";
};
};
ethernetO: ethernet©5800a000 { ... };

};

System-on-chip

CPU cores

Cortex A7 Cortex A7

GIC
IRQ controller

ST ST DDR
Ethernet MAC 12C controller controller
i i i
Ethernet CS42I.'51 DDR
audio
PHY memory
codec

/ {
cpus { ... };
memory@0 { ... };
chosen { ... };
intc: interrupt-controller@a0021000 { ... };
soc {
compatible = "simple-bus";

interrupt-parent = <&intc>;
i2cl: i2c@40012000 { ... };

ethernet0: ethernet©5800a000 {
compatible = "st,stm32mpl-dwmac", "snps,dwmac-4.20a"
reg = <0x5800a000 0x2000>;
interrupts-extended = <&intc GIC_SPI 61 IRQ_TYPE_LEVEL_HIGH>;
status = "okay";

mdio0 {
#address-cells = <1>;
#size-cells = <0>;
compatible = "snps,dwmac-mdio";
phyO: ethernet-phy©0 {
reg = <0>;
};

System-on-chip

CPU cores

Cortex A7 Cortex A7

GIC
IRQ controller

ST ST DDR
Ethernet MAC 12C controller controller
| | |
Ethernet CS42I.'51 DDR
audio
PHY memory
codec

>

>

>

v

Device Tree files are not monolithic, they can be split in several files, including
each other.
.dtsi files are included files, while .dts files are final Device Trees
» Only .dts files are accepted as input to dtc
Typically, .dtsi will contain
» definitions of SoC-level information
» definitions common to several boards
The .dts file contains the board-level information

The inclusion works by overlaying the tree of the including file over the tree of
the included file.

Allows an including file to override values specified by an included file

Uses the C pre-processor #include directive

()

Definition of the STM32MP157A SoC Definition of the STM32MP157A-DK1 board Compiled DTB
7 { #include "stm32mpl57.dtsi" / {soc {
soc { /1 i2c1: 12c@40012000 {
i2cl: 12c@40012000 { soc { compatible = "st,stm32mp15-i2c";
compatible = "st,stm32mpl5-i2c"; i2¢1: 12c@46012000 reg = <0x40012000 0x400>;
reg = <0x40012000 0x400>; * cpin:tﬁ?_names SR F— o —— interrupts = <GIC_SPI 31 IRQ...HIGH>,
interrupts = <GIC_SPI 31 IRQ...HIGH>, pinctrl-0 = <§i2cl pins B ' i SENC S 3 W, o i
ST 27 T o oIS pinctri-1 &iz:l_sleea pins a>; _— p%nctrl-names " defgult o ey
status = "disabled"; G = Jeles = St — pJ_.nctrl»e = <&}2c1_p1ns_a>g
} Cs42151: cs42{5i@4a { pinctrl-1 = <&i2cl_sleep_pins_a>;
I e g w. status = "okay";
T compitlble = cirrus,cs42151"; cs42151: cs42l5l@da {
. e = <EHlees compatible = "cirrus,cs42151";
i ! reg = <0x4a>;
i hi Y
! Y
};
stm32mp157.dtsi stm32mp157a-dkl.dts stm32mpl57a-dkl.dtb
Note 1 Note 2

The actual Device Trees for this
platform are more complicated.
This example is highly simplified.

The real DTB is in binary format.
Here we show the text equivalent of the
DTB contents.

()

Doing:

soc.dtsi
/1

soc {
usartl: serial©5c000000 {
compatible = "st,stm32h7-uart";
reg = <0x5c000000 0x400>;
status = "disabled";

board.dts

#include "soc.dtsi"

/ {
soc {
serial@5c000000 {
status = "okay";

Iy
s

%

Doing:

soc.dtsi
/1

soc {
usartl: serial©5c000000 {
compatible = "st,stm32h7-uart";
reg = <0x5c000000 0x400>;
status = "disabled";

Is exactly equivalent to:

soc.dtsi
/1

soc {
usartl: serial@5c000000 {
compatible = "st,stm32h7-uart";
reg = <0x5c000000 0x400>;
status = "disabled";

board.dts

#include "soc.dtsi"

/ {
soc {
serial@5c000000 {
status = "okay";
};
};
};

board.dts

#include "soc.dtsi"

gusartl {
status = "okay";

—> this solution is now often preferred

stm32mp151.dtsi

Single Cortex-A7
AAll common

peripherals
A stm32mpl5xxaa-pinctrl.dtsi
stm32mp153.dtsi
stm32mp15xc.dtsi
#include stm32mp151.dtsi stm32mpl5xxab-pinctrl.dtsi
P —— stm32mp15-pinctrl.dtsi
"+ CAN + Crypto
stm32mp15xxac-pinctrl.dts
L 32mp15 pinctrl.dtsi

stm32mp157.dtsi
#include stm32mp153.dtsi

+ GPU + DSI

stm32mpl5xxad-pinctrl.dtsi

____{_____

stm32mp157a-dkl.dts

Definitions q
specific to the DK1 board stm32mp15xx-dkx.dtsi

#include stn32mpls7.dtsi Denitons commen
#include stn32mpl5-pinctrl.dtsi (oris
#include stm32mpl5xxac-pinctrl.dtsi
#include stm32nplsxx-dkx.dtsi

l

stm32mp157c-dk2.dts

Definitions.
specific to the DK2 board

#include stn32mp157.dtsi
#include stm32mpl5xc.dtsi
#include stm32mpl5-pinctrl.dtsi
#include stm32mpl5xxac-pinctrl.dtsi
#include stm32mpl5xx-dkx.dtsi

‘ | I
I

SoC

Board

» Describe hardware (how the hardware is), not configuration (how | choose to
use the hardware)
» OS-agnostic
» For a given piece of HW, Device Tree should be the same for U-Boot, FreeBSD or
Linux
» There should be no need to change the Device Tree when updating the OS

» Describe integration of hardware components, not the internals of hardware
components
» The details of how a specific device/IP block is working is handled by code in device
drivers
» The Device Tree describes how the device/IP block is connected/integrated with the
rest of the system: IRQ lines, DMA channels, clocks, reset lines, etc.

» Like all beautiful design principles, these principles are sometimes violated.

» How to write the correct nodes/properties to describe a
given hardware platform 7 L

» DeviceTree Specifications — base Device Tree syntax
+ number of standard properties.
> https://www.devicetree.org/specifications/ T T
» Not sufficient to describe the wide variety of hardware. Devicetree Specification

» Device Tree Bindings — documents that each specify e
how a piece of HW should be described
» Documentation/devicetree/bindings/ in Linux
kernel sources
» Reviewed by DT bindings maintainer team
» Legacy: human readable documents
> New norm: YAML-written specifications

devicetree.org

13 February 2020

https://www.devicetree.org/specifications/

Documentation/devicetree/bindings/mtd/spear_smi.txt

This IP is not used on STM32MP1.

* SPEAr SMI

Required properties:

- compatible : "st,spear600-smi"

- reg : Address range of the mtd chip

- #address-cells, #size-cells : Must be present if the device has sub-nodes
representing partitions.

- interrupts: Should contain the STMMAC interrupts

- clock-rate : Functional clock rate of SMI in Hz

Optional properties:
- st,smi-fast-mode : Flash supports read in fast mode

Example:

smi: £1ash@fc000000 {

compatible = "st,spear600-smi";
#address-cells = <1>;
#size-cells = <1>;

Teg = <0x£c000000 0x1000>;
interrupt-parent = <&vici>;
interrupts = <12>;

clock-rate = <50000000>;

£1ash0£8000000 {
st,smi-fast-mode;

};

/* 50MHz */

Documentation/devicetree/bindings/i2c/st, stm32-i2c.yaml

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
JYAML 1.2

$id: http://devicetree.org/schemas/i2c/st,stm32-i2c.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#

title: I2C controller embedded in STMicroelectronics STM32 I2C platform

maintainers:
- Pierre-Yves MORDRET <pierre-yves.mordret@st.com>

properties:
compatible:
enum:
- st,stm32f4-i2c
- st,stm32f7-i2c
- st,stm32mp15-i2¢c

Teg:
maxItems: 1

interrupts:
items:
- description: interrupt ID for I2C event
- description: interrupt ID for I2C error

Tesets:
maxItems: 1

clocks:
maxItems: 1

dmas:
items:
- description: RX DMA Channel phandle
- description: TX DMA Channel phandle

clock-frequency:

description: Desired I2C bus clock frequency in Hz. If not specified,
the default 100 kHz frequency will be used.
For STM32F7, STM32H7 and STM32MP1 SoCs, if timing
parameters match, the bus clock frequency can be from
1Hz to 1MHz.

default: 100000

minimum: 1

maximum: 1000000

required:
- compatible
- reg
- interrupts
- resets
- clocks

examples:
-

//Example 3 (with st,stm32mp15-i2c compatible on stm32mp)

#include <dt-bindings/interrupt-controller/arm-gic.h>

#include <dt-bindings/clock/stm32mpl-clks.h>

#include <dt-bindings/reset/stu32mpl-resets.h>
12¢040013000 {

compatible = "st,stm32mp15-i2c";

#address-cells = <1>;

#size-cells = <0>;

reg = <0x40013000 0x400>;

interrupts = <GIC_SPI 33 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 34 IRQ_TYPE_LEVEL_HIGH>;

clocks = <&rcc I2C2_K>;

resets = <&rcc I2C2_R>;

i2c-scl-rising-time-ns = <185>;

i2c-scl-falling-time-ns = <20>;

st,syscfg-fmp = <&syscfg Ox4 0x2>;

» dtc only does syntaxic validation

» YAML bindings allow to do semantic validation
» Linux kernel make rules:
» make dt_binding_check
verify that YAML bindings are valid
» make dtbs_check
validate DTs currently enabled against YAML bindings
» make DT_SCHEMA_FILES=Documentation/devicetree/bindings/trivial-
devices.yaml dtbs_check
validate DTs against a specific YAML binding

» Is a list of strings
» From the most specific to the less specific

» Describes the specific binding to which the node complies.

» It uniquely identifies the programming model of the device.

» Practically speaking, it is used by the operating system to find the appropriate
driver for this device.

» When describing real hardware, typical form is vendor ,model

> Examples:

» compatible = "arm,armv7-timer";
» compatible = "st,stm32mpl-dwmac", "snps,dwmac-4.20a";
» compatible = "regulator-fixed";

» compatible = '"gpio-keys";
» Special value: simple-bus — bus where all sub-nodes are memory-mapped
devices

» Top-level DT nodes with a compatible

property and nodes that are sub-nodes of /1
simple-bus will cause Linux to identify those tiner { » Platform device
R . compatible = "...";
devices as platform devices ¥
. . . soc {
> Instantiated automatically at boot time compatible = "sinple-bus";
) uart@lee0 { ——— » Platform device
» Sub-nodes of 12C controllers — [2C devices conpatible = "...";
+
» Sub-nodes of SPI controllers — SPI devices e e, e
» Each Linux driver has a table of compatible “"C'::f:fm‘le—>_ — 12€ device
strings it supports ¥
+i
» struct of_device_id [] i

» When a DT node compatible string matches a ;

given driver, the device is bound to that driver.

()

drivers/tty/serial /stm32-usart.c

static const struct of_device_id stm32_match[] = {
{ .compatible 'st,stm32-uart", .data = &stm32f4_info},
{ .compatible t,stm32f7-uart", .data = &stm32f7_info},
{ .compatible = "st,stm32h7-uart", .data = &stm32h7_infol},
{1,

g
MODULE_DEVICE_TABLE(of, stm32_match);

static struct platform_driver stm32_serial_driver = {

.probe = stm32_serial_probe,
.remove = stm32_serial_remove,
.driver = {

.name = DRIVER_NAME,

.pm = &stm32_serial_pm_ops,

.of _match_table = of_match_ptr(stm32_match),
3},

sound/soc/codecs/cs42151-i2c.c

const struct of_device_id cs42151_of _match[] = {
{ .compatible = "cirrus,cs42151", },

3;

MODULE_DEVICE_TABLE(of, cs42151_of_match);

static struct i2c_driver cs42151_i2c_driver = {

.driver = {
.name = "cs42151",
.of _match_table = cs42151_of_match,
.pm = &cs42151_pm_ops,

},

.probe = cs42151_i2c_probe,

.remove = cs42151_i2c_remove,

.id_table = cs42151_i2c_id,

» Most important property after compatible

» Memory-mapped devices: base physical address and size of the memory-mapped
registers. Can have several entries for multiple register areas.

sai4: sai@50027000 {
reg = <0x50027000 0x4>, <0x500273f0 0x10>;
};

» Most important property after compatible

» Memory-mapped devices: base physical address and size of the memory-mapped
registers. Can have several entries for multiple register areas.

» 12C devices: address of the device on the 12C bus.

&i2cl {
hdmi-transmitter@39 {
reg = <0x39>;
};

cs42151: cs421510@4a {
reg = <0x4a>;

};

» Most important property after compatible

» Memory-mapped devices: base physical address and size of the memory-mapped
registers. Can have several entries for multiple register areas.

» 12C devices: address of the device on the 12C bus.

» SPI devices: chip select number

&gspi {
flash0: mx661512351Q0 {
reg = <0>;
};
flashl: mx66151235101 {
reg = <1>;
};
+;

» Most important property after compatible

» Memory-mapped devices: base physical address and size of the memory-mapped
registers. Can have several entries for multiple register areas.

» 12C devices: address of the device on the 12C bus.
» SPI devices: chip select number
» The unit address must be the address of the first reg entry.

said4: sai@©50027000 {
reg = <0x50027000 0x4>, <0x500273f0 0x10>;

e

%

» Integer values represented as 32-bit integers =8 &
/* This property has 1 cell */
Ca”ed Ce”S foo = <Oxdeadbeef>;
3

%

» Integer values represented as 32-bit integers =8 &
/* This property has 2 cells */
Ca”ed Ce”s foo = <Oxdeadbeef Oxbadcafe>;

};
» Encoding a 64-bit value requires two cells

%

» Integer values represented as 32-bit integers
called cells

» Encoding a 64-bit value requires two cells

» #address-cells and #size-cells: how

many cells are used in sub-nodes to encode the
address and size in the reg property

soc {

compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;

i2c@£1001000 {
reg = <0x£1001000 0x1000>;
#address-cells = <1>;
#size-cells = <0>;

eeprom@52 {
reg = <0x52>;

H

Integer values represented as 32-bit integers
called cells

Encoding a 64-bit value requires two cells

#address-cells and #size-cells: how
many cells are used in sub-nodes to encode the
address and size in the reg property
#interrupts-cells: how many cells are used
to encode interrupt specifiers for this interrupt
controller

soc {
intc: interrupt-controller@f1002000 {
compatible = "foo,bar-intc";
reg = <0x£1002000 0x1000>;
interrupt-controller;
#interrupt-cells = <2>;

Irg

12c¢@£1001000 {
interrupt-parent = <&intc>;
/* Must have two cells */
interrupts = <12 24>;

Integer values represented as 32-bit integers
called cells

Encoding a 64-bit value requires two cells

#address-cells and #size-cells: how
many cells are used in sub-nodes to encode the
address and size in the reg property

#interrupts-cells: how many cells are used
to encode interrupt specifiers for this interrupt
controller

Ditto #clock-cells, #gpio-cells,
#phy-cells, #pwm-cells, #dma-cells, etc.

soc {
clkc: clock@f1003000 {
compatible = "foo,bar-clock";
reg = <0xf1003000 0x1000>;
#clock-cells = <3>;
};

12¢@£1001000 {
/* Must have three cells */
clocks = <&clkc 12 24 32>;
};
};

v

status property indicates if the device is really in use or not

P> okay or ok — the device is really in use
» any other value, by convention disabled — the device is not in used

In Linux, controls if a device is instantiated

In .dtsi files describing SoCs: all devices that interface to the outside world have
status = disabled

Enabled on a per-device basis in the board .dts

%

» Nodes describing interrupt

controllers

» Devices like any other
P> interrupt-controller boolean

» Devices using interrupts:

> interrupts + interrupt-parent,
interrupts specifies the interrupt
number and flags,
interrupt-parent the interrupt
controller, searched recursively in the
parent nodes

P> interrupts-extended specifies the
interrupt controller, interrupt
number and flags

/4L
intc: interrupt-controller©a0021000 {
compatible = "arm,cortex-a7-gic";
#interrupt-cells = <3>;
interrupt-controller;
reg = <0xa0021000 0x1000>,
<0xa0022000 0x2000>;

};

soc {

interrupt-parent = <&intc>;
spi2: spi@4000b000 {
interrupts = <GIC_SPI 36 IRQ_TYPE_LEVEL_HIGH>;

. 000

ipcc: mailbox@4c001000 {
interrupts-extended =
<&intc GIC_SPI 100 IRQ_TYPE_LEVEL_HIGH>,
<&intc GIC_SPI 101 IRQ_TYPE_LEVEL_HIGH>,
<&gexti 61 1>;

rcc: rcc@50000000 {

compatible = "st,stm32mpi-rcc", "syscon";
L. reg = <0x50000000 0x1000>;
» Similar pattern for other resources #clock-cells = <1>;
. #reset-cells = <1>;
shared by multiple hardware blocks ¥
» Clock controllers dmamux1: dma-router@48002000 {
compatible = "st,stm32h7-dmamux";
> DMA controllers reg = <0x48002000 0xic>;
> Reset controllers GNEEIID & &P
dma-requests = <128>;
> dma-masters = <&dmal &dma2>;
dma-channels = <16>;
H nsi clocks = <&rcc DMAMUX>;
» A Device Tree node descriving the e e Do s
controller as a device b

HEi8 1@4000c000 {
» References from other nodes that use s
clocks = <&rcc SPI3_K>;

resources provided by this controller et O e e

dmas = <&dmamuxl 61 0x400 0x05>,
<&dmamux1 62 0x400 0x05>;
};

» Some properties are associated to a corresponding <prop>-names property

» Gives some human-readable names to entries of the corresponding <prop>

properties
interrupts =<0 59 0>, <0 70 0>;
interrupt-names = "macirq", "macpmt';
clocks = <&car 39>, <&car 45>, <&car 86>, <&car 87>;
clock-names = "gnssm_rgmii", "gnssm_gmac", "rgmii", "gmac";

» Such names can be typically be used by the driver
» platform_get_irq_byname(pdev, "macirq");

» Most modern SoCs, including the Gt

STM32MP1, have more features than o CRIo l

they have pins to expose those)

. ART3 RX
features to the outside world. %—»
Mux m—

» Pins are muxed: a given pin can be UART 3 >

used for one function or another UART3 TX
» A specific IP block in the SoC controls i1 o

the muxing of pins: the pinmux —>

controller Mux e
» The Device Tree describes which pin co [[wecosoa 7

configurations are possible, and which

configurations are used by the SoC Confguration

different devices.

()

arch/arm/boot/dts/stm32mp151.dtsi

pinctrl: pin-controller@50002000 {

g

#address-cells = <1>;
#size-cells = <1>;
compatible = "st,stm32mp157-pinctrl";

gpioa: gpio@50002000 { ... };
gpiob: gpio@50003000 { ... };
gpioc: gpio@50004000 { ... };
gpiod: gpio@50005000 { ... };
gpioe: gpio©50006000 { ... };

{ ...}

gpiof: gpio@50007000

pinctrl_z: pin-controller-z@54004000 {

#address-cells = <1>;

#size-cells = <1>;

compatible = "st,stm32mp157-z-pinctrl";
ranges = <0 0x54004000 0x400>;

gpioz: gpio©54004000 { };

()

arch/arm/boot/dts/stm32mp151.dtsi

&pinctrl {
i2¢1_pins_a: i2¢1-0 {
pins {
pinmux = <STM32_PINMUX('D', 12, AF5)>, /* I2C1_SCL */
<STM32_PINMUX('F', 15, AF5)>; /* I2C1_SDA */
bias-disable;
drive-open-drain;
slew-rate = <0>;
};
};

m_canl_pins_a: m-canl-0 {
pinsi {
pinmux = <STM32_PINMUX('H', 13, AF9)>; /* CAN1_TX */
slew-rate = <1>;
drive-push-pull;
bias-disable;

};

pins2 {
pinmux = <STM32_PINMUX('I', 9, AF9)>; /* CAN1_RX */
bias-disable;

};

s

AF0 AF1 AF2 AF3 AF4 AFS5 AFG AFT
SPINZS1/ SPI/IzS2/
sAMnzc2! SAK/
Port TIM12M6H7! | SAM/4/IZCE! TiM8! 12C112/3/4/51 ::gﬂ:gj s;'::gf:," sp;a;::’sar
HDPISYSIRTC | LPTINAISYS! | TIM34/5H2/ | LPTIM2/3/4/5 | USART1!
SPI4ISIEN2CY/ | I2CAUARTA! | USART1I2/3/6!
RTC HDPISYS DFSDM1 | TIMASILPTIMZ/
| IMaSLETM2 | sommcw3t | DFSDMI UARTT!
CEC SDMMCZ
DFSDM1_ DFSDM1__ | SPI3_MOSI
PDE B TIMI6_CHIN | SAI_D1 i) Fap s 500 | SA1SDA | USART2RX
DFSDM1_ DFSDM1_
PD7 | TRACEDE - B a1 1262_SCL - o) USARTZ_CK
DFSDM1
PD8 B - B vl B - SAI3_SCK_B | USART3_TX
DFSDM1_
PDY B . B oDt B . SAI3_SD_B | USARTZ RX
Port D] DFSDM1_ SPI3_MISO!
PD10| RTC_REFIN | TIMi6_BKIN g s swea | SpEMEY | sas s | UsarTs K
USART3_CTS/
D11 B - B LPTIMZ_INZ | 12C4 SMBA | 12G1_SMBA - DA e
USART3 RTS/
PD12 - LPTIMI_INT | TIM4 CHi | LPTIMZ_IN1 | I2€4_SCL 12G1_SCL - USRS DE
PD13 B LPTIMI_OUT | TiM4_CH2 B 12C4_SDA | 1201 SDA | 1283 MCK .
PD14 B B TIN4_CH3 B B B SAI3_MCLK_B R
PD15 B B TIM4_CH4 B B B SAI3_MCLK_A .

&i2c1 {
pinctrl-names = "default", "sleep";
pinctrl-0 = <&i2cl_pins_a>;
pinctrl-1 = <&i2cl_sleep_pins_a>;

» Typically board-specific, in .dts

» pinctrl-0, pinctrl-1, pinctrl-X provides the pin mux configurations for the
different states

> pinctrl-names gives a name to each state, mandatory even if only one state

> States are mutually exclusive

» Driver is responsible for switching between states

> default state is automatically set up when the device is probed

> Let's see how to describe an LED and an 12C device connected to the DK1
platform.

» Create arch/arm/boot/dts/stm32mpl57a-dkl-custom.dts which includes
stm32mp157a-dkl.dts

#include "stm32mp157a-dki.dts" A,

> Make sure stm32mpl157a-dkl-custom.dts gets compiled to a DTB by changing
arch/arm/boot/dts/Makefile

dtb-$ (CONFIG_ARCH_STM32) += \
stm32mp157a-dkl.dtb \
stm32mp157a-dk1-custom.dtb
» make dtbs
DTC arch/arm/boot/dts/stm32mp157a-dki-custom.dtb J

stm32mp157a-dkl-custom.dts

#include "stm32mp157a-dkil.dts"

/A
leds {
compatible = "gpio-leds";
webinar {
label = "webinar";
gpios = <&gpioe 1 GPIO_ACTIVE_HIGH>;
}
}
};
shell

echo 255 > /sys/class/leds/webinar/brightness

CN14

1 ARD_DO PE7 USART7_RX
2 ARD_D1 PE8 USART7_TX
3 ARD_D2 PE1 10

4 ARD_D3 PD14 TIM4_CH3

5 ARD_D4 PE10 10

6 ARD_D5 PD15 TIM4_CH4

7 ARD_D6 PE9 TIM1_CH1
8 ARD_D7 PD1 10

%

stm32mp157a-dk1-custom.dts

&i2c5 {
status = "okay";
clock-frequency = <100000>;
pinctrl-names = "default", "sleep";
pinctrl-0 = <&i2c5_pins_a>;
pinctrl-1 = <&i2c5_pins_sleep_a>;

pressure@76 {
compatible = "bosch,bme280";
reg = <0x76>;
};
};

shell

cat /sys/bus/iio/devices/iio:device2/in_temp_input
24380

CN13

1 ARD_D8 PG3 0

2 ARD_D9 PH6 TIM12_CH1

3 ARD_D10 PEN SPI4_NSS and TIM1_CH2
4 ARD_D11 PE14 SPI4_MOSI and TIM1_CH4
5 ARD_D12 PE13 SPI4_MISO

6 ARD_D13 PE12 SPI4_SCK

7 GND - GND

8 VREFP - VREF+

9 ARD_D14 PA12 12C5_SDA

10 ARD_D15 PA11 12C5_SCL

@1
BME~BHP280
2o <«

Details at https://bootlin.com/blog/building-a-linux-system-for-the-

stm32mpl-connecting-an-i2c-sensor/

https://bootlin.com/blog/building-a-linux-system-for-the-stm32mp1-connecting-an-i2c-sensor/
https://bootlin.com/blog/building-a-linux-system-for-the-stm32mp1-connecting-an-i2c-sensor/

» Lots of Device Tree topics not covered in this talk

> range property for address translation

v

Complex Device Tree bindings

» Audio, display, camera devices
» PCle

» Linux kernel API for DT

» U-Boot tooling for DT manipulation
» DT overlays

> etc.

» Device Tree specifications
https://www.devicetree.org/

» Device Tree bindings
https://elixir.bootlin.com/linux/latest/source/Documentation/
devicetree/bindings

» Device Tree for Dummies talk
https://www.youtube.com/watch?v=uzBwHF jJOvU

> elinux.org wiki page on Device Tree
https://elinux.org/Device_Tree_Reference

» Numerous Device Tree talks at the Embeded Linux Conference
https://elinux.org/Device_Tree_Presentations

https://www.devicetree.org/
https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings
https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings
https://www.youtube.com/watch?v=uzBwHFjJ0vU
https://elinux.org/Device_Tree_Reference
https://elinux.org/Device_Tree_Presentations

» Representation of non-discoverable
hardware

» Tree of nodes, with properties

» Standardization based on Device
Tree bindings

Devicetree Specification
Release v0.3

» New description language with lots of
properties and sometimes complex
bindings

devicetree.org

v

Used for numerous CPU architectures

v

Now widely used outside of Linux

» A must know for all embedded Linux
developers!

13 February 2020

Expertise in embedded Linux
Training

Engineering services

Linux BSP development
Kernel drivers

Open-source contributor

Contact us!

O
O
O
s
D

info@bootlin.com

Authorized
Partner

4

Thanks to ST for supporting this webinar!

Questions ?

bootlin

https://bootlin.com

Slides at https://bootlin.com/pub/conferences/2021/webinar/petazzoni-device-tree-101/

https://bootlin.com
https://bootlin.com/pub/conferences/2021/webinar/petazzoni-device-tree-101/

