
Embedded Recipes 2022

Advanced Camera
Support on Allwinner
SoCs with Mainline
Linux
Paul Kocialkowski
paul@bootlin.com

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1



Paul Kocialkowski

▶ Embedded Linux engineer at Bootlin
▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Strong open-source focus

▶ Open-source contributor
▶ Co-maintainer of the cedrus VPU driver in V4L2
▶ Contributor to the sun4i-drm DRM driver
▶ Contributing the logicvc-drm DRM driver
▶ Developed the displaying and rendering graphics with Linux training

▶ Living in Toulouse, south-west of France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1



Advanced Camera Support on Allwinner SoCs with Mainline Linux

An Introduction to Image Capture Technology

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1



Overview of the Digital Image Capture Chain

An image capture chain

▶ Optics: shape light rays
▶ Sensor: convert light to digital values
▶ Interface: transport values
▶ Processing: produce good-looking pictures
▶ Display/encoding: show/store pictures (out of the scope of this talk)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1



Processing RAW Images

Data coming from a sensor ADC needs processing:
▶ Data corresponds to a bayer pattern, not pixels
▶ Brightness is linear, not adapted for display
▶ Sensors have a non-zero dark-level current
▶ Noise is present, color is off, image looks bad

Enhancement takes place in Image Signal Processors (ISPs)

Three distinct domains are involved:
1. Bayer domain, ends with debayering step
2. RGB domain, ends with YUV conversion
3. YUV domain, ends with final picture

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1



Image Enhancements in ISPs

Various enhancements are usually applied to the image:
▶ Dead pixel correction: discard invalid values
▶ Black level correction: remove dark level current
▶ White balance: adjust R-G-B balance with coefficients/offsets
▶ Noise filtering: remove electronic noise
▶ Color matrix: adjust colors for fidelity
▶ Gamma: adjust brightness curve for non-linearity
▶ Saturation: adjust colorfulness
▶ Brightness: adjust global luminosity
▶ Contrast: adjust bright/dark difference

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1



Image Enhancements in ISPs

More advanced enhancements may also be applied:
▶ Lens shading: correct lens irregular brightness
▶ Lens dewarp: correct lens geometry distortion effect
▶ Stabilization: crop to remove shaking
▶ Color LUT: Translate colors with a specific style

Hardware implementations:
▶ ISPs embedded in sensors tend to be simple

▶ Provide YUV data to the camera interface
▶ Multimedia Systems on a Chip often have an advanced ISP

▶ Require raw bayer data on the camera interface
▶ Require specific calibration data for the sensor/lens

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1



Processing RAW Images: Illustration

Bayer step RGB step YUV step

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1



Parameters to Adjust

Some parameters depend on the situation:
▶ Focus depends on the area of interest
▶ White balance depends on the light source(s)
▶ Exposure depends on the amount of light

Exposure depends on a few parameters:
▶ Diaphragm aperture (f-number)
▶ Exposure time (shutter speed)
▶ Amplifier gain (ISO number equivalent)

Advanced users will set parameters manually, with artistic implications

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1



Parameters to Adjust

Some parameters depend on the situation:
▶ Focus depends on the area of interest
▶ White balance depends on the light source(s)
▶ Exposure depends on the amount of light

Exposure depends on a few parameters:
▶ Diaphragm aperture (f-number)
▶ Exposure time (shutter speed)
▶ Amplifier gain (ISO number equivalent)

Advanced users will set parameters manually, with artistic implications

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1



Automatic Parameters Control with 3A

In other cases, automatic parameters control is desirable:
▶ Automatic exposition: manage exposure time and gain (optionally diaphragm)
▶ Auto-focus: detect blurry and sharp areas, adjust with focus coil
▶ Auto white balance: detect dominant lighting and adjust

Implemented using 3A algorithms:
▶ General algorithms described in academic literature
▶ Involve a feedback loop system, using statistics
▶ Implementations are usually hardware specific (ISP and sensor),

often considered to be the secret sauce!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1



Automatic Parameters Control with 3A

In other cases, automatic parameters control is desirable:
▶ Automatic exposition: manage exposure time and gain (optionally diaphragm)
▶ Auto-focus: detect blurry and sharp areas, adjust with focus coil
▶ Auto white balance: detect dominant lighting and adjust

Implemented using 3A algorithms:
▶ General algorithms described in academic literature
▶ Involve a feedback loop system, using statistics
▶ Implementations are usually hardware specific (ISP and sensor),

often considered to be the secret sauce!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1



Hardware Interfaces for Capture
Sensors need to transmit data:
▶ Analog interfaces (CVBS, etc) are mostly deprecated
▶ Parallel digital interfaces: basic, BT.656

typically used with old and low-end sensors
▶ Serial digital interfaces: MIPI CSI-2, LVDS, SDI, HiSPi

typically used with high-end sensors

Basic parallel interface:
▶ One TTL signal per bit, usually 8/10/12/16/24 bits width
▶ Pixel clock and sync signals (hsync, vsync)

MIPI CSI-2 serial interface:
▶ Differential pairs, using double data rate (DDR)
▶ One clock lane (high rates) and 1-4 data lanes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1



Hardware Interfaces for Capture
Sensors need to transmit data:
▶ Analog interfaces (CVBS, etc) are mostly deprecated
▶ Parallel digital interfaces: basic, BT.656

typically used with old and low-end sensors
▶ Serial digital interfaces: MIPI CSI-2, LVDS, SDI, HiSPi

typically used with high-end sensors

Basic parallel interface:
▶ One TTL signal per bit, usually 8/10/12/16/24 bits width
▶ Pixel clock and sync signals (hsync, vsync)

MIPI CSI-2 serial interface:
▶ Differential pairs, using double data rate (DDR)
▶ One clock lane (high rates) and 1-4 data lanes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1



Hardware Interfaces for Capture
Sensors need to transmit data:
▶ Analog interfaces (CVBS, etc) are mostly deprecated
▶ Parallel digital interfaces: basic, BT.656

typically used with old and low-end sensors
▶ Serial digital interfaces: MIPI CSI-2, LVDS, SDI, HiSPi

typically used with high-end sensors

Basic parallel interface:
▶ One TTL signal per bit, usually 8/10/12/16/24 bits width
▶ Pixel clock and sync signals (hsync, vsync)

MIPI CSI-2 serial interface:
▶ Differential pairs, using double data rate (DDR)
▶ One clock lane (high rates) and 1-4 data lanes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1



Advanced Camera Support on Allwinner SoCs with Mainline Linux

Scope and Use Case

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1



Scope and Use Case: Allwinner + MIPI CSI-2 + ISP

Allwinner platforms (V3 and A83T):
▶ Systems on a Chip with ARM CPUs
▶ MIPI CSI-2 receiver
▶ Camera interface (CSI)
▶ Image Signal Processor (ISP)

Image sensors (OV8865, OV5648):
▶ I2C control interface
▶ MIPI CSI-2 transmitter
▶ Bayer RAW formats (10/12 bits)
▶ Minimal to inexistent onboard ISP

The BananaPi-M3 with OV8865
connected

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1



Scope and Use Case: Allwinner + MIPI CSI-2 + ISP

Allwinner platforms (V3 and A83T):
▶ Systems on a Chip with ARM CPUs
▶ MIPI CSI-2 receiver
▶ Camera interface (CSI)
▶ Image Signal Processor (ISP)

Image sensors (OV8865, OV5648):
▶ I2C control interface
▶ MIPI CSI-2 transmitter
▶ Bayer RAW formats (10/12 bits)
▶ Minimal to inexistent onboard ISP

The BananaPi-M3 with OV8865
connected

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1



Advanced Camera Support on Allwinner SoCs with Mainline Linux

Status of Allwiner Camera Support in
Mainline Linux

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1



Mainline Linux Support and Allwinner Camera Support

Allwinner platform support in mainline Linux:
▶ Long-time effort from the sunxi community, very active

https://linux-sunxi.org/Linux_mainlining_effort
▶ Multimedia areas are often the last missing parts
▶ Allwinner started contributing (more or less) very recently

Camera support in mainline Linux:
▶ sun4i-csi driver for first generation CSI
▶ sun6i-csi driver for second generation CSI
▶ Third generation CSI support is missing
▶ MIPI CSI-2 and ISP support was entirely missing

non-free blobs for ISP support and A80 MIPI CSI-2 in SDK

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

https://linux-sunxi.org/Linux_mainlining_effort


Mainline Linux Support and Allwinner Camera Support

Allwinner platform support in mainline Linux:
▶ Long-time effort from the sunxi community, very active

https://linux-sunxi.org/Linux_mainlining_effort
▶ Multimedia areas are often the last missing parts
▶ Allwinner started contributing (more or less) very recently

Camera support in mainline Linux:
▶ sun4i-csi driver for first generation CSI
▶ sun6i-csi driver for second generation CSI
▶ Third generation CSI support is missing
▶ MIPI CSI-2 and ISP support was entirely missing

non-free blobs for ISP support and A80 MIPI CSI-2 in SDK

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

https://linux-sunxi.org/Linux_mainlining_effort


Camera Support in Linux with V4L2

Video4Linux2 (V4L2) is the subsystem/API for media support in Linux

▶ Supports various types of pixel-related devices
basically anything that is not a display or gpu

▶ Provides userspace with video devices (e.g. /dev/video0)
▶ Implements a generic userspace API including:

▶ Format negotiation, implemented in struct v4l2_ioctl_ops
▶ Memory management (alloc, free, mmap), implemented in struct vb2_mem_ops
▶ A queue interface for buffers of a given type (output, capture...),

implemented in struct vb2_ops
▶ A control interface for configuration

▶ Good fit for all-in-one devices (e.g. USB UVC cameras)
assumes that a memory (DMA) interface is available

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1



V4L2 Support for Complex Camera Systems : Subdevs

Complex systems bring the need for more refinement:
▶ Internal blocks with FIFOs
▶ External devices with interfaces (e.g. sensors)
▶ Possibility to configure each block and the topology

Hence the notion of subdevs was introduced to V4L2:
▶ Represent a single block (usually not DMA-capable)
▶ Exposed to userspace via dedicated nodes /dev/v4l-subdev0
▶ Dedicated format configuration, implemented in struct v4l2_subdev_pad_ops
▶ Dedicated stream management, implemented in

struct v4l2_subdev_video_ops
▶ Called by video devices with v4l2_subdev_call

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1



V4L2 Support for Complex Camera Systems : Subdevs

Complex systems bring the need for more refinement:
▶ Internal blocks with FIFOs
▶ External devices with interfaces (e.g. sensors)
▶ Possibility to configure each block and the topology

Hence the notion of subdevs was introduced to V4L2:
▶ Represent a single block (usually not DMA-capable)
▶ Exposed to userspace via dedicated nodes /dev/v4l-subdev0
▶ Dedicated format configuration, implemented in struct v4l2_subdev_pad_ops
▶ Dedicated stream management, implemented in

struct v4l2_subdev_video_ops
▶ Called by video devices with v4l2_subdev_call

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1



V4L2 Support for Complex Camera Systems : Subdevs Integration

Subdevs need to be parented to a v4l2 device (controlling entity)

Simple case: the all-in-one driver
▶ A single driver may register a parent v4l2 device, a video device and subdev(s)
▶ The subdev can be registered directly:

v4l2_device_register_subdev(v4l2_dev, subdev);

Complex case: multiple drivers involved
▶ The video device driver will typically register a v4l2 device
▶ Each subdev driver will register its subdev asynchronously:

v4l2_async_register_subdev(subdev);
▶ A driver that needs a subdev needs to identify and wait for it

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1



V4L2 Support for Complex Camera Systems : Subdevs Integration

Subdevs need to be parented to a v4l2 device (controlling entity)

Simple case: the all-in-one driver
▶ A single driver may register a parent v4l2 device, a video device and subdev(s)
▶ The subdev can be registered directly:

v4l2_device_register_subdev(v4l2_dev, subdev);

Complex case: multiple drivers involved
▶ The video device driver will typically register a v4l2 device
▶ Each subdev driver will register its subdev asynchronously:

v4l2_async_register_subdev(subdev);
▶ A driver that needs a subdev needs to identify and wait for it

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1



V4L2 Support for Complex Camera Systems : Fwnode Graph

The fwnode graph represents the connection between different blocks:
▶ Typically described in device-tree with port/endpoint
▶ The meaning of each port is described in the device-tree bindings
▶ Endpoints are retrieved by the driver and parsed with a helper:

fwnode_graph_get_endpoint_by_id()
v4l2_fwnode_endpoint_parse()

▶ May contain an indication of the bus type:
enum v4l2_mbus_type, e.g. V4L2_MBUS_CSI2_DPHY

▶ As well as bus-specific information:
e.g. struct v4l2_fwnode_bus_mipi_csi2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1



V4L2 Support for Complex Camera Systems : Fwnode Graph

Device-tree example for camera to MIPI CSI-2 bridge:

imx219: camera@10 {
compatible = "sony,imx219";
...
port {

camera_to_bridge: endpoint {
data-lanes = <1 2>;
link-frequencies = /bits/ 64 <456000000>;
remote-endpoint = <&bridge_from_camera>;

};
};

};

mipi_csi2: csi@1cb1000 {
compatible = "allwinner,sun8i-v3s-mipi-csi2";
...
ports {

...
port@0 {

reg = <0>;
bridge_from_camera: endpoint {

data-lanes = <1 2>;
remote-endpoint = <&camera_to_bridge>;

};
};
...

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1



V4L2 Support for Complex Camera Systems : Async Subdevs

Async registration allows other drivers to use the subdev:
▶ A link between devices is described with fwnode graph
▶ An async notifier will match and notify when the subdev is available:

v4l2_async_notifier_add_fwnode_remote_subdev
▶ The async notifier can be used by the driver with a v4l2 device:

v4l2_async_notifier_register(v4l2_dev, notifier);
▶ Or by a subdev that needs another subdev (e.g. a bridge):

v4l2_async_subdev_notifier_register(subdev, notifier);
▶ A callback gives the requesting driver a struct v4l2_subdev

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1



V4L2 Support for Complex Camera Systems : Media Controller

The media controller API provides coordination between blocks:
▶ Each block is an entity with sink/source pads

derivated from a video device or a subdev
▶ Entities declare a particular function

e.g. MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER
▶ Links between pads of entities are created by drivers,

may allow userspace to enable/disable them
▶ Grouped in a media device (tied to a v4l2 device)
▶ Performs runtime validation for links, implemented in

struct media_entity_operations’s link_validate
▶ Topology is exposed to userspace, usually controlled with media-ctl:

media-ctl -l '"sun6i-csi-bridge":1 -> "sun6i-csi-capture":0[1]'

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1



V4L2 Support for Complex Camera Systems : Media Controller

The i.MX capture driver’s media topology
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1



V4L2 Support for Image Signal Processors (ISPs)
Specific aspects related to ISPs:
▶ Usually have an internal pipeline with multiple blocks
▶ Parameters are highly specific (not a good fit for V4L2 controls)
▶ Provide stats information buffers (3A, histogram)
▶ Exposes one or multiple capture interfaces

ISPs integration in V4L2:
▶ Processor represented by a subdev/media entity: MEDIA_ENT_F_PROC_VIDEO_ISP
▶ Capture video devices for pixels: queues with type

V4L2_BUF_TYPE_VIDEO_CAPTURE
▶ Meta output video devices for parameters: queue with type

V4L2_BUF_TYPE_META_OUTPUT with dedicated (struct) buffer type
▶ Meta capture video devices for stats: queue with type

V4L2_BUF_TYPE_META_CAPTURE with dedicated (struct) buffer type

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1



V4L2 Support for Image Signal Processors (ISPs)
Specific aspects related to ISPs:
▶ Usually have an internal pipeline with multiple blocks
▶ Parameters are highly specific (not a good fit for V4L2 controls)
▶ Provide stats information buffers (3A, histogram)
▶ Exposes one or multiple capture interfaces

ISPs integration in V4L2:
▶ Processor represented by a subdev/media entity: MEDIA_ENT_F_PROC_VIDEO_ISP
▶ Capture video devices for pixels: queues with type

V4L2_BUF_TYPE_VIDEO_CAPTURE
▶ Meta output video devices for parameters: queue with type

V4L2_BUF_TYPE_META_OUTPUT with dedicated (struct) buffer type
▶ Meta capture video devices for stats: queue with type

V4L2_BUF_TYPE_META_CAPTURE with dedicated (struct) buffer type
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1



V4L2 Support for Image Signal Processors (ISPs): rkisp1

Example driver: rkisp1
▶ rkisp1_isp subdev device to coordinate
▶ rkisp1_mainpath, rkisp1_selfpath

giving pixels, with resizers
▶ rkisp1_params taking

struct rkisp1_params_cfg
▶ rkisp1_stats giving

struct rkisp1_stat_buffer
The rkisp1 media topology

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1



Advanced Camera Support on Allwinner SoCs with Mainline Linux

Accomplished Work for Advanced Camera
support on Allwinner

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1



A31/V3 and A83T MIPI CSI-2 Support

▶ MIPI CSI-2 controllers feed (raw) data to the CSI controller
▶ Represented as bridges (subdevs) between CSI and the sensor
▶ Requires adaptation to the CSI code to select interface
▶ Needs to get sensor pixel rate from dedicated control: V4L2_CID_PIXEL_RATE
▶ Using a D-PHY block with the generic Linux PHY API

▶ phy_mipi_dphy_get_default_config helper not accounting for DDR

A83T Support:
▶ Reference source code in Allwinner SDK:

drivers/media/video/sunxi-vfe/mipi_csi/bsp_mipi_csi.c
▶ Some magic values in registers (undocumented)
▶ D-PHY is mixed with controller registers

▶ In-driver PHY provider and consumer

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1



A31/V3 and A83T MIPI CSI-2 Support

A31/V3 Support:
▶ Reference source code in Allwinner SDK:

drivers/media/video/sunxi-vfe/mipi_csi/{protocol,dphy}
▶ Documentation available in A31 user manual
▶ Same D-PHY block used for MIPI DSI, in Rx mode instead of Tx
▶ Driver already exists for Tx, needs direction selection:

▶ Describe with submode? Not a run-time decision...
▶ Describe with different compatible? Same hardware block...
▶ Describe with optional device-tree property

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1



V3 and A83T MIPI CSI-2 Support: Patch Series

▶ First iteration sent out in October 2020
▶ Series later integrated with ISP work

arch/arm/boot/dts/sun8i-a83t.dtsi | 26 ++
arch/arm/boot/dts/sun8i-v3s.dtsi | 68 ++++
drivers/media/platform/sunxi/sun6i-csi/sun6i_csi.c | 218 ++++++++----
drivers/media/platform/sunxi/sun6i-csi/sun6i_csi.h | 65 ++--
drivers/media/platform/sunxi/sun6i-csi/sun6i_video.c | 57 +--
drivers/media/platform/sunxi/sun6i-csi/sun6i_video.h | 7 +-
drivers/media/platform/sunxi/sun6i-mipi-csi2/sun6i_mipi_csi2.c | 600 +++++++++++++++++++++++++++++++
drivers/media/platform/sunxi/sun6i-mipi-csi2/sun6i_mipi_csi2.h | 117 ++++++
drivers/media/platform/sunxi/sun8i-a83t-mipi-csi2/Kconfig | 11 +
drivers/media/platform/sunxi/sun8i-a83t-mipi-csi2/Makefile | 4 +
drivers/media/platform/sunxi/sun8i-a83t-mipi-csi2/sun8i_a83t_dphy.c | 92 +++++
drivers/media/platform/sunxi/sun8i-a83t-mipi-csi2/sun8i_a83t_dphy.h | 39 ++
drivers/media/platform/sunxi/sun8i-a83t-mipi-csi2/sun8i_a83t_mipi_csi2.c | 666 +++++++++++++++++++++++++++++++++++
drivers/media/platform/sunxi/sun8i-a83t-mipi-csi2/sun8i_a83t_mipi_csi2.h | 197 +++++++++++
drivers/phy/allwinner/phy-sun6i-mipi-dphy.c | 164 ++++++++-
25 files changed, 2633 insertions(+), 141 deletions(-)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1



ISP Support and Integration

Input/output aspects:
▶ ISP takes (raw) data from one of the CSI controller(s)
▶ DRAM input exists in theory but unable to make it work
▶ Input/interface part of CSI controller needs to be configured
▶ Internal mux routes data to ISP instead of CSI DMA

▶ Impossible to switch back to CSI DMA without reboot
▶ Two outputs available: main-channel and sub-channel

Major CSI rework required:
▶ Separate bridge from DMA engine (subdev and video device)
▶ Register with ISP’s v4l2/media devices for common topology
▶ Allow standalone use (both with and without ISP enabled):

sun6i_csi_isp_detect helper
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1



ISP Support and Integration: Topology

The sun6i-isp/sun6i-csi media topology

CSI components:
▶ sun6i-csi-bridge
▶ sun6i-csi-capture

ISP components:
▶ sun6i-isp-proc
▶ sun6i-isp-params
▶ sun6i-isp-capture

MIPI CSI-2 interface:
▶ sun6i-mipi-csi2
▶ sun8i-a83t-mipi-csi2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1



ISP Support and Integration: Features and API

Parameters configure modules of the ISP:
▶ Passed via sun6i-isp-params video device
▶ uAPI structure: struct sun6i_isp_params_config
▶ Applied to next load buffer update

Supported features:
▶ Bayer coefficients, with R/GR/GB/B gain/offset:

struct sun6i_isp_params_config_bayer
▶ 2D noise filtering (BDNF) coefficients for G and R/B:

struct sun6i_isp_params_config_bdnf
▶ Submitted to staging since a stable uAPI needs all features covered

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/1



ISP Driver and Integration: Patch Series

▶ First iteration sent out in September 2021

drivers/media/platform/sunxi/sun6i-csi/sun6i_csi.c | 1051 +++++++++-----------------------
drivers/media/platform/sunxi/sun6i-csi/sun6i_csi.h | 155 ++---
drivers/media/platform/sunxi/sun6i-csi/sun6i_csi_bridge.c | 895 +++++++++++++++++++++++++++
drivers/media/platform/sunxi/sun6i-csi/sun6i_csi_bridge.h | 64 ++
drivers/media/platform/sunxi/sun6i-csi/sun6i_csi_capture.c | 1094 ++++++++++++++++++++++++++++++++++
drivers/media/platform/sunxi/sun6i-csi/sun6i_csi_capture.h | 73 +++
drivers/media/platform/sunxi/sun6i-csi/sun6i_csi_reg.h | 364 ++++++-----
drivers/staging/media/sunxi/sun6i-isp/sun6i_isp.c | 577 ++++++++++++++++++
drivers/staging/media/sunxi/sun6i-isp/sun6i_isp.h | 86 +++
drivers/staging/media/sunxi/sun6i-isp/sun6i_isp_capture.c | 759 +++++++++++++++++++++++
drivers/staging/media/sunxi/sun6i-isp/sun6i_isp_capture.h | 79 +++
drivers/staging/media/sunxi/sun6i-isp/sun6i_isp_params.c | 571 ++++++++++++++++++
drivers/staging/media/sunxi/sun6i-isp/sun6i_isp_params.h | 53 ++
drivers/staging/media/sunxi/sun6i-isp/sun6i_isp_proc.c | 598 +++++++++++++++++++
drivers/staging/media/sunxi/sun6i-isp/sun6i_isp_proc.h | 61 ++
drivers/staging/media/sunxi/sun6i-isp/sun6i_isp_reg.h | 275 +++++++++
drivers/staging/media/sunxi/sun6i-isp/uapi/sun6i-isp-config.h | 43 ++
51 files changed, 8702 insertions(+), 1808 deletions(-)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/1



Advanced Camera Support on Allwinner SoCs with Mainline Linux

Future Work and Improvements

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/1



Remaining Features to Implement

Roadmap for ISP driver completeness:
▶ Support more platforms (at least A83T)
▶ Declare hardware revisions (modules availability):

media_dev->hw_revision
▶ Support for stats (hist/ae/awb/af/afs)
▶ Support for sub-channel, scaling and rotation
▶ Complete uAPI that describes all modules
▶ Support for all available modules

▶ Start with black level correction, color matrix and gamma
▶ Userspace 3A algorithms support

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/1



Integration with libcamera

▶ Community-driven project for advanced camera support: libcamera
▶ Provides abstraction for applications, GStreamer, Android
▶ Implements complex pipeline support
▶ Implements hardware-specific 3A algorithms
▶ Good fit for Allwinner A31 ISP userspace support

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/1



Hardware Availability

Olimex announced the S3-OLinuXino, with a RPi-compatible MIPI CSI-2 connector!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/1



Questions? Suggestions? Comments?

Paul Kocialkowski
paul@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/1

https://bootlin.com/pub/conferences/


Advanced Camera Support on Allwinner SoCs with Mainline Linux

Extra Slides

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/1



Camera Optical Systems

Optical systems have multiple elements and purposes:
▶ Lens to make light converge towards sensor surface

▶ Focal length (f) indicates the amount of convergence
▶ Sets the angle of view, results in magnification/zoom effect
▶ Optional moving elements to define focus plane

▶ Optional focus coil to electrically control focus adjustment
▶ Optional diaphragm to control aperture

▶ F-number (e.g. f/1.8) indicates how open the diaphragm is
▶ Aperture decreases with f-number (diaphragm closes)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/1



Camera Optical Systems: Illustration

Camera optical system

Diaphragm aperture variation (CC BY-SA 3.0, KoeppiK, Wikimedia Commons)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/1



Image Sensors

Components of an image sensor:
1. Color Filter Array (CFA) following a Bayer pattern (R/G/G/B)
2. Photo-sensitive cells (photosites) in CMOS or CCD technology
3. Amplifier and ADC to produce digital values

▶ Generally 8, 10 or 12-bit data
4. Configurable shutter speed (exposure time)
5. Clocks and timings for frame rate

▶ Capture cycle repeatedly following precise timings
▶ External clock reference for internal PLLs
▶ Limits exposure time

6. Processing (more or less advanced)
7. Control and configuration interface

▶ Usually configured via I2C or SPI
8. Data transmission interface

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/1



Image Sensors: Illustration

OV5648 block diagram (Omnivision)

Bayer pattern (CC BY-SA 3.0,
Cburnett, Wikimedia Commons)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/1



Hardware Interfaces for Capture: Schematics

Parallel and MIPI CSI-2 interfaces on the S3-OLinuXino

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/1


