
Linux Day 2023, Bergamo

Debugging with GDB
and remote GDB
Luca Ceresoli
luca.ceresoli@bootlin.com

© Copyright 2004-2023, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/25

Luca Ceresoli

▶ Embedded Linux engineer at Bootlin
• Embedded Linux experts
• Engineering services: Linux BSP development, kernel porting and drivers,

Yocto/Buildroot integration, real-time, boot-time, security, multimedia
• Training services: Embedded Linux, Linux kernel drivers, Yocto, Buildroot, graphics

stack, boot-time, real-time, debugging, audio
▶ Linux kernel and bootloader development, Buildroot and Yocto integration
▶ Open-source contributor
▶ Living in Bergamo, Italy
▶ luca.ceresoli@bootlin.com

https://bootlin.com/company/staff/luca-ceresoli/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/25

https://bootlin.com/company/staff/luca-ceresoli/

Debugging with GDB and remote GDB

Introduction

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/25

Debugging

“Everyone knows that debugging is twice as hard as writing a program in the first place.
So if you’re as clever as you can be when you write it, how will you ever debug it?”
– Brian Kernighan

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/25

Good practices

▶ Keep your code clean and simple!
• Simple to implement, understand, debug… also helps writing less bugs!

▶ Compiler are now smart enough to detect a wide range of errors at compile-time
using warnings

• Using -Werror -Wall -Wextra is recommended if possible to catch errors as early
as possible

▶ Compilers now offer static analysis capabilities
• GCC allows to do so using the -fanalyzer flag
• LLVM provides dedicated tools that can be used in build process

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/25

https://gcc.gnu.org/onlinedocs/gcc-11.1.0/gcc/Static-Analyzer-Options.html
https://clang-analyzer.llvm.org/command-line.html

Debugging with GDB and remote GDB

GDB

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/25

GDB: GNU Project Debugger

▶ The debugger on GNU/Linux, available for most embedded
architectures.

▶ Supported languages: C, C++, Pascal, Objective-C, Fortran,
Ada...

▶ Command-line interface
▶ Integration in many graphical IDEs
▶ Can be used to

• control the execution of a running program, set breakpoints or
change internal variables

• to see what a program was doing when it crashed: post mortem
analysis

▶ https://www.gnu.org/software/gdb/
▶ https://en.wikipedia.org/wiki/Gdb
▶ New alternative: lldb (https://lldb.llvm.org/)

from the LLVM project.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/25

https://www.gnu.org/software/gdb/
https://en.wikipedia.org/wiki/Gdb
https://lldb.llvm.org/

Debugging with GDB and remote GDB

GDB crash course

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/25

GDB crash course (1/3)

▶ GDB is used mainly to debug a process by starting it with gdb
• $ gdb <program>

▶ GDB can also be attached to running processes using the program PID
• $ gdb -p <pid>

▶ When using GDB to start a program, the program needs to be run with
• (gdb) run

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/25

GDB crash course (2/3)

A few useful GDB commands
▶ break foobar (b)

Put a breakpoint at the entry of function foobar()

▶ break foobar.c:42
Put a breakpoint in foobar.c, line 42

▶ print var, print $reg or print task->files[0].fd (p)
Print the variable var, the register $reg or a more complicated reference. GDB can also
nicely display structures with all their members

▶ info registers
Display architecture registers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/25

GDB crash course (3/3)

▶ continue (c)
Continue the execution after a breakpoint

▶ next (n)
Continue to the next line, stepping over function calls

▶ step (s)
Continue to the next line, entering into subfunctions

▶ stepi (si)
Continue to the next instruction

▶ finish
Execute up to function return

▶ backtrace (bt)
Display the program stack

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/25

Debugging with GDB and remote GDB

GDB advanced commands

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/25

GDB advanced commands (1/3)

▶ info threads (i threads)
Display the list of threads that are available

▶ info breakpoints (i b)
Display the list of breakpoints/watchpoints

▶ delete <n> (d <n>)
Delete breakpoint <n>

▶ thread <n> (t <n>)
Select thread number <n>

▶ frame <n> (f <n>)
Select a specific frame from the backtrace, the number being the one displayed when
using backtrace at the beginning of each line

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/25

GDB advanced commands (2/3)

▶ watch <variable> or watch *<address>
Add a watchpoint on a specific variable/address.

▶ print variable = value (p variable = value)
Modify the content of the specified variable with a new value

▶ break if condition == value
Break only if the specified condition is true

▶ watch if condition == value
Trigger the watchpoint only if the specified condition is true

▶ x/<n><u> <address>
Display memory at the provided address. n is the amount of memory to display, u is the
type of data to be displayed (b/h/w/g). Instructions can be displayed using the i type.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/25

GDB advanced commands (3/3)

▶ list <expr>
Display the source code associated to the current program counter location.

▶ disassemble <location,start_offset,end_offset> (disas)
Display the assembly code that is currently executed.

▶ p $newvar = value
Declare a new gdb variable that can be used locally or in command sequence

▶ p function(arguments)
Execute a function using GDB. NOTE: be careful of any side effects that may happen
when executing the function

▶ define <command_name>
Define a new command sequence. GDB will prompt for the sequence of commands.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/25

Debugging with GDB and remote GDB

Remote GDB debugging

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/25

Remote debugging

▶ In a non-embedded environment, debugging takes place using gdb or one of its
front-ends.

▶ gdb has direct access to the binary and libraries compiled with debugging symbols.
▶ However, in an embedded context, the target platform environment is often too

limited to allow direct debugging with gdb (2.4 MB on x86).
▶ Remote debugging is preferred

• ARCH-linux-gdb is used on the development workstation, offering all its features.
• gdbserver is used on the target system (only 400 KB on arm).

ARCH-linux-gdb
gdbserver

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/25

Remote debugging: architecture

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/25

Remote debugging: usage

▶ On the target, run a program through gdbserver.
Program execution will not start immediately.
gdbserver localhost:<port> <executable> <args>
gdbserver /dev/ttyS0 <executable> <args>

▶ Otherwise, attach gdbserver to an already running program:
gdbserver --attach localhost:<port> <pid>

▶ Then, on the host, start ARCH-linux-gdb <executable>,
and use the following gdb commands:

• To tell gdb where shared libraries are:
gdb> set sysroot <library-path> (typically path to build space without lib/)

• To connect to the target:
gdb> target remote <ip-addr>:<port> (networking)
gdb> target remote /dev/ttyUSB0 (serial link)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/25

Debugging with GDB and remote GDB

How a debugger works
(within an Operating System)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/25

System architecture

▶ Porcesses do not access the hardware resources
directly

▶ The kernel isolates processes from teh
hardware and from other processes

▶ Processes ask the kernel to provide its services
via syscalls (usually wrapped by the C library)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/25

Debugger and debuggee

▶ debugger and debuggee are different
processes, which normally cannot
acccess each other memory and
control execution

▶ A debugger uses the ptrace() syscall
to control a process execution and
read/write its data

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/25

ptrace

▶ The ptrace mechanism allows processes to trace other processes by accessing
tracee memory and register contents

▶ A tracer can observe and control the execution state of another process
▶ Works by attaching to a tracee process using the ptrace() system call (see

man 2 ptrace)
▶ Can be executed directly using the ptrace() call but often used indirectly using

other tools.

long ptrace(enum __ptrace_request request, pid_t pid, void *addr, void *data);

▶ Used by GDB, strace and all debugging tools that need access to the tracee
process state

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/25

Questions? Suggestions? Comments?

Luca Ceresoli
luca.ceresoli@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/25

https://bootlin.com/pub/conferences/

Rights to copy
© Copyright 2004-2023, Bootlin
License: Creative Commons Attribution - Share Alike 3.0
https://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free:

▶ to copy, distribute, display, and perform the work
▶ to make derivative works
▶ to make commercial use of the work

Under the following conditions:
▶ Attribution. You must give the original author credit.
▶ Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only

under a license identical to this one.
▶ For any reuse or distribution, you must make clear to others the license terms of this work.
▶ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Document sources:
https://bootlin.com/pub/conferences/
https://github.com/bootlin/training-materials/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/25

https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://bootlin.com/pub/conferences/
https://github.com/bootlin/training-materials/

	Debugging with GDB and remote GDB
	Introduction
	GDB
	GDB crash course
	GDB advanced commands
	Remote GDB debugging
	How a debugger works (within an Operating System)

