
How to Contribute to OpenEmbedded, Yocto,
and Many Other Open Source Projects

Michael Opdenacker, Bootlin

Yocto Project Summit, 2023.11

2 Yocto Project® | The Linux Foundation®

Yocto Project and OpenEmbedded Contributor Guide

● A new document added in August and September 2023

● Main goal: have a central, community reviewed reference
instead of scattered, uncontrolled Wiki pages.

● Learned new Git tricks in the process and added my own

https://docs.yoctoproject.org/contributor-guide/

https://docs.yoctoproject.org/contributor-guide/

3 Yocto Project® | The Linux Foundation®

Goals of this presentation

• Explain how to contribute code to many projects like
OpenEmbedded and Yocto Project: Linux, U-Boot, BusyBox,
GNU, Git and so many others.

• Skip details specific to OE and Yocto Project.
Read our contributor guide.

• Contributing to other projects is a way
to contribute to OE and Yocto Project too!

https://openclipart.org/detail/284209/jonas-6

https://openclipart.org/detail/284209/jonas-6

4 Yocto Project® | The Linux Foundation®

Contributing through mailing lists

Advantages vs. web-based workflows:

● More eyes reviewing changes, instead of selected people

● Possibility to comment on specific parts of the changes

● Proven workflow that many long-time contributors are
familiar with.

● Patchwork tool available to keep track of submitted patches.

● Patch testing tools for screening typical mistakes

5 Yocto Project® | The Linux Foundation®

Set up Git

Install packages first
(Debian / Ubuntu example):
$ sudo apt install git-core git-email

Then set add your name and e-mail address:
$ git config --global user.name "Ada Lovelace"
$ git config --global user.email "ada@bootlin.com"

Needed because we want signed commits!

https://openclipart.org/detail/283561/milk-me-please

https://openclipart.org/detail/283561/milk-me-please

6 Yocto Project® | The Linux Foundation®

Prepare your repository

Clone the repository where the code to modify lies:
$ git clone https://git.openembedded.org/openembedded-core
$ cd openembedded-core

Then create one branch for each set of changes:
$ git checkout <ref-branch>
$ git checkout -b my-changes

Make sure you keep unrelated changes in different
branches!

7 Yocto Project® | The Linux Foundation®

Implement and test your changes

• Go ahead and implement your
changes in your branch.

• Once again, only related changes

• Make sure you test them well enough.

• You don't want to ruin your
reputation and make future patches
harder to accept if people figure out
you didn't test your changes!

https://openclipart.org/detail/284205/jonas-4

https://openclipart.org/detail/284205/jonas-4

8 Yocto Project® | The Linux Foundation®

Group your changes

• Major rule: one commit per change.
Commits should be atomic.

• This makes changes easier to review
and accept. Some commits may be
accepted in the first submission,
some may need further work.

• A counter rule: possible to group changes
of the same kind to different files,
if they have the same maintainers.

https://openclipart.org/detail/288697/smartsnow

https://openclipart.org/detail/288697/smartsnow

9 Yocto Project® | The Linux Foundation®

Each change should be functional

• So that you can bisect changes (git bisect) to
locate when a bug or regression started.

• If one of the commits doesn't build or prevents
the execution of the tests, you won't be able to
tell whether it falls into the "good" or "bad"
sides.

• So, don't introduce a change that breaks
something, followed by a change that repairs it
in another way.

https://openclipart.org/detail/281312/dragonfest

https://openclipart.org/detail/281312/dragonfest

10 Yocto Project® | The Linux Foundation®

Commit your changes (1)

• Reminder: 1 commit per atomic change!

• For files already part of the repository,
you can commit them directly:
git commit -s file1 file2

• New files should be staged first:
$ git add newfile1 newfile2

• If you want to add specific files to the next commit:
$ git add file1 file2 (git add -A for all modified files)

• Then you can commit all added files:
$ git commit -s

https://openclipart.org/detail/284203/jonas-2

https://openclipart.org/detail/284203/jonas-2

11 Yocto Project® | The Linux Foundation®

Describe your changes properly

Give details such as:

• WHY the patch was created
• The consequences of not having the patch
• How it was tested
• Think about people studying the code

history in the future
• Side note: use the present tense:

add new bike_shedding() function

12 Yocto Project® | The Linux Foundation®

Developer's certificate of Origin

• git commit -s signs your commits messages:
Signed-off-by: Albert Dranac <dranac@bootlin.com>

• This means you agree
to the Developer's Certificate of Origin.

• This is required by most projects
to trace their commits.

https://openclipart.org/detail/283593/duckling

https://www.kernel.org/doc/html/latest/process/submitting-patches.html#sign-your-work-the-developer-s-certificate-of-origin
https://openclipart.org/detail/283593/duckling

13 Yocto Project® | The Linux Foundation®

Commit your changes (2)

• In case have multiple changes in the same file,
but want to add them to separate commits.

• You can use git add -p to stage only selected hunks at a time.
$ git add -p
diff --git a/documentation/README b/documentation/README
index 2f077fa4bf..67dac233eb 100644
--- a/documentation/README
+++ b/documentation/README
@@ -32,6 +32,7 @@ Manual Organization
 Here the folders corresponding to individual manuals:
 * brief-yoctoprojectqs - Yocto Project Quick Start
+* contributor-guide - Yocto Project and OpenEmbedded Contributor Guide
 * overview-manual - Yocto Project Overview and Concepts Manual
 * ref-manual - Yocto Project Reference Manual
 * bsp-guide - Yocto Project Board Support Package (BSP) Developer's Guide
(1/1) Stage this hunk [y,n,q,a,d,e,?]?

• Then commit the staged files, then stage the next files, etc.

14 Yocto Project® | The Linux Foundation®

Find a good commit title

• Important: commit titles are shown in the list of commits.

• Such a title should give the commit list reader a clear idea of what the
commit is about.

• Some projects also expect to put a prefix to identify the modified
directory, file, or subsystem. Read the contributing guidelines or see
prior commit titles for the same files:
$ git log --oneline <paths>
13d9551ba6 vim: use upstream generated .po files
3c0deafcfc useradd_base: Fix sed command line for passwd-expire
faa32bbb35 ffmpeg: Upgrade 6.0 -> 6.1

15 Yocto Project® | The Linux Foundation®

Credit contributors
Use git commit --amend to add tags to the commit description

• Reported-by:
Name and email of a person reporting a bug
that your commit is trying to fix.

• Suggested-by:
People to credit for the idea of making the change.

• Tested-by, Reviewed-by:
People having tested your changes or reviewed your code.

• CC:
People you want to send a copy of your changes to.

All these people will be copied when you send your patches
with git send-email. This helps to get reviews too! https://openclipart.org/detail/289210/its-good-to-be-king

https://openclipart.org/detail/289210/its-good-to-be-king

16 Yocto Project® | The Linux Foundation®

Describe your branch

• Sending a cover letter is useful to explain
your proposal if you have multiple
commits in your branch.

• A convenient way is to add a description
to your branch:
$ git branch --edit-description

• Start the description with a first line
which will be used as the subject line for
the cover letter.

https://openclipart.org/detail/283592/pole-dancing

https://openclipart.org/detail/283592/pole-dancing

17 Yocto Project® | The Linux Foundation®

Describing a single commit

For a single commit, you probably won't have a cover letter, but
there's an easy way to provide more information, by adding extra text
at the end of the commit message:

Changes in V2:
- Use devm_kmalloc() instead of kmalloc()

The text starting from --- won't be included in the commit message
when the patch is merged.

18 Yocto Project® | The Linux Foundation®

Generate patches for your branch

• If your branch didn't need a description:
$ git format-patch <ref-branch>

• Otherwise, generate a cover letter too:
$ git format-patch --cover-letter \
 --cover-from-description=auto <ref-branch>

• This generates multiple patch files:
0000-cover-letter.patch
0001-first-change.patch
0002-second-change.patch

• Review your patches to find last minute issues!

19 Yocto Project® | The Linux Foundation®

Add a specific prefix to patch titles

• For e-mail review, can be required to prefix the commit with the branch it applies to.

• However, you don't want this prefix to appear in the final commit lists.

• Bad example:
$ git commit -s "[kirkstone] manuals: add 4.0.12 release notes"
$ git format-patch kirkstone
Patch title: [PATCH] [kirkstone] manuals: add 4.0.12 release notes
Applied patch commit title: [kirkstone] manuals: add 4.0.12 release notes

• Good example:
$ git commit -s "manuals: add 4.0.12 release notes"
$ git format-patch –subject-prefix="kirkstone][PATCH" kirkstone
Patch title: [kirkstone][PATCH] manuals: add 4.0.12 release notes
Applied patch commit title: manuals: add 4.0.12 release notes

20 Yocto Project® | The Linux Foundation®

Check your patches

Some projects have tools to inspect patches
(coding rules, required information, typical mistakes…)

• Linux kernel / U-Boot example:
$ scripts/checkpatch.pl *.patch

• OE / Yocto project:
$ patchtest –patch file.patch

https://openclipart.org/detail/284026/desk-lamp

https://openclipart.org/detail/284026/desk-lamp

21 Yocto Project® | The Linux Foundation®

Send patches by e-mail

• Important to send patches as inline attachments (in the e-mail
body, not as regular attachments). This way reviewers can
easily "reply" to any of your patch lines.

• Only git send-email can do this reliably without making the
received patches inapplicable.

https://openclipart.org/detail/283663/mail

https://openclipart.org/detail/283663/mail

22 Yocto Project® | The Linux Foundation®

Configuring git send-email

• Either use a local Mail Transport Agent such as msmtp or sendmail.

• Or let git send-email connect to your regular SMTP server.
Example for Google Mail:

$ git config --global sendemail.smtpserver smtp.gmail.com
$ git config --global sendemail.smtpserverport 587
$ git config --global sendemail.smtpencryption tls
$ git config --global sendemail.smtpuser william.gates@gmail.com
$ git config --global sendemail.smtppass = XXXXXXXX

23 Yocto Project® | The Linux Foundation®

Sending the patches

• Some projects such as the Linux kernel have a nice command to
figure out who to send a patch to:
$./scripts/get_maintainer.pl *.patch

• For other projects, read the contributing guidelines

• Then send the patches to the expected recipients:
$ git send-email --to … --cc … *.patch

• For a repository with always the same contact address:
$ git config --local sendemail.to \
 openembedded-core@lists.openembedded.org

24 Yocto Project® | The Linux Foundation®

Taking reviews into account
• Reviews will make you modify your changes, and may even

change your list of commits (number, order, description).

• Don't add fixes as extra commits at the end of your branch. Instead,
rework your commits as if you were sending them for the first time.

• A branch with a single commit is easy to modify:
$ git commit --amend

• git rebase in interactive mode is a great tool to rework a branch
with multiple commits, reordering, editing, merging or deleting them:
$ git rebase -i <ref-branch>

https://openclipart.org/detail/283814/chick-chat

https://openclipart.org/detail/283814/chick-chat

25 Yocto Project® | The Linux Foundation®

Submitting a new iteration

• Update branch information (git branch --edit-description) to help
people who have reviewed previous iterations:
- Changes in V3:
 Fix null pointer dereference
- Changes in V2:
 Fix checkpatch issues

• Regenerate patches with -v3 (for version 3)…
$ git format-patch -v3 …
This generates v3-0***.patch files
with a [PATCH v3] subject line.

• Send the patches in the usual way.

26 Yocto Project® | The Linux Foundation®

What to remember

• Use git commit -s

• Credit contributors

• Store cover letter in branch

• Send with git send-email

• git commit --amend
to edit a single patch

• git rebase -i
to rework an entire branch

• 1 commit per atomic change

• 1 branch per change set

• git add -p
to stage specific hunks

• Each change should work

• Test your changes

• Describe your changes well

Questions?
PDF and editable sources:

https://bootlin.com/pub/conferences/2023/yp-summit/
Image credits:

https://openclipart.org/artist/klaro

https://www.twitch.tv/yocto_project
https://twitter.com/yoctoproject
https://stackoverflow.com/search?q=yocto+project
https://www.linkedin.com/company/yocto-project/
https://www.youtube.com/user/TheYoctoProject/
https://bootlin.com/pub/conferences/2023/yp-summit/
https://openclipart.org/artist/klaro

