
Building a Linux system for the
STM32MP1: connecting an I2C
sensor

After showing how to build and run a minimal Linux system for the

STM32MP157 Discovery board in a previous blog post, we are now going

to see how to connect an I2C sensor, adjust the Device Tree to enable the

I2C bus and I2C device, and how to adjust the kernel configuration to

enable the appropriate kernel driver.

List of articles in this series:

Building a Linux system for the STM32MP1: basic system�.

Building a Linux system for the STM32MP1: connecting an I2C sensor�.

Choosing an I2C sensor

For this project, we wanted an

I2C sensor that was at least

capable of measuring the

temperature, so we simply

started by search i2c

temperature sensor on

Amazon. After a bit of research,

we found that the BME280

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

1 of 30 5/16/19, 10:30 AM

sensor from Bosch was

available on several inexpensive

break-out boards, and it already

had a device driver in the

upstream Linux kernel. When choosing hardware, it is always important

to check whether it is already supported or not in the upstream Linux

kernel. Having a driver already integrated in the upstream Linux kernel

has a number of advantages:

The driver is readily available, you don’t have to integrate a vendor-

provided driver, with all the possible integration issues

The driver has been reviewed by the Linux kernel maintainers, so you

can be pretty confident of the code quality

The driver is using standard Linux interfaces, and not some vendor-

specific one

The driver will be maintained in the long run by the kernel

community, so you can continue to update your Linux kernel to

benefit from security updates, bug fixes and new features

In addition, it also turns out that the BME280 sensor not only provides

temperature sensing, but also pressure and humidity, which makes it

even more interesting.

Among the numerous inexpensive BME280 break-out boards, we have

chosen specifically this one, but plenty of others are available. The

following details will work with any other BME280-based break-out

board.

Connecting the I2C sensor

From a connectivity point of view, our I2C sensor is pretty simple: a VIN

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

2 of 30 5/16/19, 10:30 AM

signal for power, a GND signal for ground, a SCL for the I2C clock and a

SDA for the I2C data.

To understand how to connect this sensor to the Discovery board, we

need to start with the board user manual.

The Discovery board has two main expansion connectors: CN2 and the

Arduino connectors.

Connector CN2

Connector CN2 is a 40-pin male header on the front side of the board:

Section 7.17 of the board user manual documents the pin-out of this

connector. There is one I2C bus available, through the I2C1_SDA (pin 27)

and I2C1_SCL (pin 28) signals.

Arduino connectors

Connectors CN13 , CN14 , CN17 , CN18 are female connectors on the back

side of the board. They are compatible in pin-out and form-factor with

the Arduino connector:

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

3 of 30 5/16/19, 10:30 AM

Section 7.16 of the board user manual documents the pin-out for these

connectors. There is one I2C bus available as well in CN13 , through the

I2C5_SDA (pin 9) and I2C5_SCL (pin 10) signals.

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

4 of 30 5/16/19, 10:30 AM

Choosing the connector

According to the block diagram in Figure 3 of the board user manual,

the I2C1 bus is already used to connect the touchscreen, the USB hub,

the audio codec and the HDMI transceiver. However, I2C5 doesn’t seem

to be used at all. In addition, with the screen mounted on the Discovery

board, the CN2 connector is beneath the screen, which makes it a bit

more difficult to use than the Arduino connectors on the back side.

We will therefore use the I2C5 bus, through the Arduino connector CN13 .

Pin 9 will be used to connect the data signal of our sensor, and pin 10 will

be used to connect the clock signal of our sensor.

Finalizing the connectivity

We still have to find out how to connect the VIN and GND pins.

According to the BME280 datasheet, VDDmain supply voltage range:

1.71V to 3.6V. The Arduino connector CN16 provides either 3.3V or 5V, so

we’ll chose 3.3V (pin 4). And this connector also has multiple ground

pins, among which we will chose pin 6.

Overall, this gives us the following connections:

Sensor signal Arduino connector Pin

VIN CN16 pin 4

GND CN16 pin 6

SDA CN13 pin 9

SCL CN13 pin 10

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

5 of 30 5/16/19, 10:30 AM

Here are a few pictures of the setup. First, on the sensor side, we have a

purple wire for VIN , a grey wire for GND , a white wire for SCL and a black

wire for SDA :

On the board side, we can see the purple wire (VIN) going to pin 4 of

CN16, the grey wire (GND) going to pin 6 of CN16, the white wire (SCL)

going to pin 10 of CN13 and the black wire (SDA) going to pin 9 of CN13.

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

6 of 30 5/16/19, 10:30 AM

With this we’re now all set in terms of hardware setup, let’s move on to

enabling the I2C bus in Linux!

Enabling the I2C bus

An introduction to the Device Tree

In order to enable the I2C bus, we’ll need to modify the Device Tree, so

we’ll first need to give a few details about what Device Tree is. If you read

again our previous blog post in this series, we already mentioned the

Device Tree. As part of the Buildroot build process, a file called

stm32mp157c-dk2.dtb is produced, and this file is used at boot time by the

Linux kernel: it is the Device Tree.

On most embedded architectures, devices are connected using buses

that do not provide any dynamic enumeration capabilities. While buses

like USB or PCI provide such capabilities, popular buses used on

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

7 of 30 5/16/19, 10:30 AM

embedded architectures like memory-mapped buses, I2C, SPI and

several others do not allow the operating system to ask the hardware:

what peripherals are connected ? what are their characteristics ?. The

operating system needs to know which devices are available and what

their characteristics are. This is where the Device Tree comes into play: it

is a data structure that describes in the form of a tree all the devices that

we have in our hardware platform, so that the Linux kernel knows the

topology of the hardware.

On ARM platforms, each particular board is described by its own Device

Tree file. In our case, the STM32MP157 Discovery Kit 2 is described by the

Device Tree file arch/arm/boot/dts/stm32mp157c-dk2.dts in the Linux

kernel source code. This human-readable source file, with a .dts

extension, is compiled during the Linux kernel build process into a

machine-readable binary file, with a .dtb extension.

This stm32mp157c-dk2.dts describes the hardware of our Discovery Kit 2

platform. In fact, it only describes what is specific to the Discovery Kit 2:

the display panel, the touchscreen, the WiFi and Bluetooth chip.

Everything else is common with the Discovery Kit 1 platform, which is

why the stm32mp157c-dk2.dts file includes the arm/boot

/dts/stm32mp157a-dk1.dts file. Indeed, stm32mp157a-dk1.dts describes the

hardware on the Discovery Kit 1, which is the same as the Discovery Kit 2,

without the display, touchscreen and WiFi/Bluetooth chip.

In turn, the stm32mp157a-dk1.dts includes three other Device Tree files:

arm/boot/dts/stm32mp157c.dtsi, which describes all the devices inside

the STM32MP157 system-on-chip. It will be used by all Device Tree files

decsribing boards based on the STM32MP157 processor.

arm/boot/dts/stm32mp157c-m4-srm.dtsi, which describes the Cortex-

M4 resources, which we are not going to discuss further for the

moment

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

8 of 30 5/16/19, 10:30 AM

arm/boot/dts/stm32mp157cac-pinctrl.dtsi, which provides some pin-

muxing related details, which are specific to the SoC package being

used.

At this point, we won’t give much more generic details about the Device

Tree, as it’s an entire topic on its own. For additional details, you could

check the Device Tree for Dummies presentation for your author (slides,

video) or the devicetree.org web site.

I2C controllers in the Device Tree

Zooming in to the topic of I2C, we can see that arm/boot

/dts/stm32mp157c.dtsi describes 6 I2C controllers through six different

nodes in the Device Tree:

i2c1: i2c@40012000

i2c2: i2c@40013000

i2c3: i2c@40014000

i2c4: i2c@5c002000

i2c5: i2c@40015000

i2c6: i2c@5c009000

This list of six I2C controllers nice matches the list of I2C controllers in the

STM32MP157 datasheet, and their base address in the memory map,

section 2.5.2:

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

9 of 30 5/16/19, 10:30 AM

In the file arm/boot/dts/stm32mp157a-dk1.dts , we can see that the I2C1 bus

is enabled, and that a cs42l51 audio codec (I2C address 0x4a) and a

sii9022 HDMI transceiver (I2C address 0x39) are connected to it:

&i2c1 {

status = "okay";

cs42l51: cs42l51@4a {

compatible = "cirrus,cs42l51";

reg = <0x4a>;

};

hdmi-transmitter@39 {

compatible = "sil,sii9022";

reg = <0x39>;

};

};

Also, on the I2C4 bus, we can see the USB-C controller (I2C address 0x28)

and the PMIC (I2C address 0x33):

&i2c4 {

status = "okay";

typec: stusb1600@28 {

compatible = "st,stusb1600";

reg = <0x28>;

};

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

10 of 30 5/16/19, 10:30 AM

pmic: stpmic@33 {

compatible = "st,stpmic1";

reg = <0x33>;

};

};

So, to enable our I2C5 bus, we will simply need to add:

&i2c5 {

status = "okay";

clock-frequency = <100000>;

pinctrl-names = "default", "sleep";

pinctrl-0 = <&i2c5_pins_a>;

pinctrl-1 = <&i2c5_pins_sleep_a>;

};

to enable the bus. This piece of code adds the following Device Tree

properties to the I2C5 Device Tree node:

status = "okay" which simply tells the Linux kernel: I really intend to

use this device, so please enable whatever driver is needed to use this

device

clock-frequency = <100000> tells Linux at which frequency we want to

operate the I2C bus: in this case, 100 kHz

The pinctrl properties configure the pin muxing, so that the pins are

configured in the I2C function when the system is running (the

default state) and into a different state to preserve power when the

system is in suspend to RAM (sleep state). Both i2c5_pins_a and

i2c5_pins_sleep_a are already defined in arch/arm/boot/dts

/stm32mp157-pinctrl.dtsi.

For now, this doesn’t describe any device on the bus, but should be

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

11 of 30 5/16/19, 10:30 AM

sufficient to have the bus enabled in Linux. The question now is how to

make this modification in our Device Tree in the proper way ?

Changing the Linux kernel source code

When Buildroot builds each package, it extracts its source code in

output/build/<package>-<version> , so the source code of our Linux kernel

has been extracted in output/build/linux-custom/ . One could therefore

be tempted to make his code changes directory in output/build/linux-

custom/ , but this has a number of major drawbacks:

output/build/linux-custom/ is not under version control: it is not part

of a Linux kernel Git repository, so you can’t version control your

changes, which is really not great

�.

output/build/linux-custom/ is a temporary folder: if you do a make

clean in Buildroot, this folder will be entirely removed, and re-created

during the next Buildroot build

�.

So, while doing a change directly in output/build/linux-custom/ is

perfectly fine for quick/temporary changes, it’s not a good option to

make changes that will be permanent.

To do this in a proper way, we will use a feature of Buildroot called

pkg_OVERRIDE_SRCDIR , which is documented in section 8.12.6 Using

Buildroot during development of the Buildroot manual. This feature

allows to tell Buildroot: for a given package, please don’t download it

from the usual location, but instead take the source code for a specific

location on my system. This specific location will of course be under

version control, and located outside of Buildroot, which allows to solve

the two issues mentioned above.

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

12 of 30 5/16/19, 10:30 AM

So, let’s get set this up for the Linux kernel source code:

Start in the parent folder of Buildroot, so that the Linux kernel source

code ends up being side-by-side with Buildroot

�.

Clone the official upstream Linux kernel repository. Even though we

could directly clone the STMicro Linux kernel repository, your author

always finds it nicer to have the origin Git remote set up to the

official upstream Git repository.

git clone git://git.kernel.org/pub/scm/linux/kernel

/git/torvalds/linux.git

�.

Move inside this Git repository

cd linux/

�.

Add the STMicro Linux kernel repository as a remote:

git remote add stmicro https://github.com/STMicroelectronics

/linux.git

�.

Fetch all the changes from the STMicro Linux kernel repository:

git fetch stmicro

�.

Check out the version of the Linux kernel that Buildroot is using, i.e

the tag v4.19-stm32mp-r1.2 :

git checkout v4.19-stm32mp-r1.2

�.

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

13 of 30 5/16/19, 10:30 AM

At this point, our linux/ folder contains the exact same source code

as what Buildroot has retrieved. It is time to make our Device Tree

change by editing arch/arm/boot/dts/stm32mp157c-dk2.dts and at the

end of it, add:

&i2c5 {

status = "okay";

clock-frequency = <100000>;

pinctrl-names = "default", "sleep";

pinctrl-0 = <&i2c5_pins_a>;

pinctrl-1 = <&i2c5_pins_sleep_a>;

};

Once done, we need to tell Buildroot to use our kernel source code,

using the pkg_OVERRIDE_SRCDIR mechanism. To this, create a file called

local.mk , in the top-level Buildroot source directory, which contains:

LINUX_OVERRIDE_SOURCE = $(TOPDIR)/../linux

This tells Buildroot to pick the Linux kernel source from $(TOPDIR)/..

/linux . We’ll now ask Buildroot to wipe out its Linux kernel build, and

do a build again:

$ make linux-dirclean

$ make

If you look closely at what Buildroot will do, it will do a rsync of the

Linux kernel source code from your linux/ Git repository to

output/build/linux-custom in Buildroot, and then do the build. You can

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

14 of 30 5/16/19, 10:30 AM

check output/build/linux-custom/arch/arm/boot/dts/stm32mp157c-

dk2.dts to make sure that your I2C5 change is there!

If that is the case, then reflash output/images/sdcard.img on your SD

card, and run the new system on the board. It’s now time to test the

I2C bus!

Testing the I2C bus

After booting the new system on your Discovery board and logging in

as root, let’s have a look at all I2C related devices:

ls -l /sys/bus/i2c/devices/

total 0

lrwxrwxrwx 0-002a � ../../../devices/platform/soc/40012000.i2c/i2c-0/0-002a

lrwxrwxrwx 0-0038 � ../../../devices/platform/soc/40012000.i2c/i2c-0/0-0038

lrwxrwxrwx 0-0039 � ../../../devices/platform/soc/40012000.i2c/i2c-0/0-0039

lrwxrwxrwx 0-004a � ../../../devices/platform/soc/40012000.i2c/i2c-0/0-004a

lrwxrwxrwx 2-0028 � ../../../devices/platform/soc/5c002000.i2c/i2c-2/2-0028

lrwxrwxrwx 2-0033 � ../../../devices/platform/soc/5c002000.i2c/i2c-2/2-0033

lrwxrwxrwx i2c-0 � ../../../devices/platform/soc/40012000.i2c/i2c-0

lrwxrwxrwx i2c-1 � ../../../devices/platform/soc/40015000.i2c/i2c-1

lrwxrwxrwx i2c-2 � ../../../devices/platform/soc/5c002000.i2c/i2c-2

lrwxrwxrwx i2c-3 � ../../../devices/platform/soc/40012000.i2c/i2c-0/i2c-3

This folder is part of the sysfs filesystem, which is used by the Linux

kernel to expose to user-space applications all sort of details about

the hardware devices connected to the system. More specifically, in

this folder, we have symbolic links for two types of devices:

The I2C busses: i2c-0 , i2c-1 , i2c-2 and i2c-3 . It is worth

mentioning that the bus numbers do not match the datasheet:

they are simply numbered from 0 to N. However, the i2c-0

symbolic link shows it’s the I2C controller at base address

0x40012000 , so it’s I2C1 in the datasheet, i2c-1 is at base address

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

15 of 30 5/16/19, 10:30 AM

0x40015000 so it’s I2C5 in the datasheet, and i2c-2 at base address

0x5c002000 is I2C4 in the datasheet. i2c-3 is special as it’s not an

I2C bus provided by the SoC itself, but the I2C bus provided by the

HDMI transmitter to talk with the remote HDMI device (since this is

unrelated to our discussion, we won’t go into more details on this).

The I2C devices: 0-002a , 0-0038 , 0-0039 , 0-004a , 2-0028 , 2-033 .

These entries have the form B-SSSS where B is the bus number

and SSSS is the I2C address of the device. So you can see that for

example 0-004a corresponds to the cs42l51 audio codec we

mentioned earlier.

In our case, we are interested by I2C5, which is known by Linux as

i2c-1 . We will use the i2cdetect utility, provided by Busybox, to

probe the different devices on this bus:

i2cdetect -y 1

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- 76 --

Interesting, we have a device at address 0x76 ! Try to disconnect either

VIN , SDA or SCL of your I2C sensor, and repeat the command:

i2cdetect -y 1

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

16 of 30 5/16/19, 10:30 AM

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

The device at 0x76 has disappeared, so it looks like our sensor is at I2C

address 0x76. To confirm this, let’s have a look at what the BME280

datasheet says about the I2C address of the device, in section 6.2 I2C

Interface:

So, the I2C address is indeed 0x76 when the SDO pin of the sensor is

connected to GND, which is probably what our BME280 break-out

board is doing. It matches the address we have detected with

i2cdetect !

Now, let’s talk to our device. According to section 5.4 Register

description of the datasheet, there is a Chip ID register, at offset 0xD0

that is supposed to contain 0x60 :

We can read this register using the i2cget command:

i2cget -y 1 0x76 0xd0

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

17 of 30 5/16/19, 10:30 AM

0x60

Good, this matches the expected value according to the BME280

datasheet, so it seems like communication with our I2C device is

working, let’s move on to enabling the BME280 sensor driver.

Enabling the sensor driver

As discussed earlier, this BME280 sensor already has a driver in the

upstream Linux kernel, in the IIO subsystem. IIO stands for Industrial

Input/Output, and this subsystems contains a lot of drivers for various

ADCs, sensors and other types of measurement/acquisition devices. In

order to use this driver for our BME280 device, we will essentially have

to do two things:

Enable the driver in our Linux kernel configuration, so that the

driver code gets built as part of our kernel image

�.

Describe the BME280 device in our Device Tree so that the Linux

kernel knows we have one such device, and how it is connected to

the system

�.

Adjusting the kernel configuration

In the previous blog post, we explained that the Linux kernel

configuration used to build the kernel for the STM32 Discovery board

was located at board/stmicroelectronics/stm32mp157-dk/linux.config .

Obviously, we are not going to edit this file manually: we need to run

the standard Linux kernel configuration tools.

It turns out that Buildroot has convenient shortcuts to manipulate

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

18 of 30 5/16/19, 10:30 AM

the Linux kernel configuration. We can run the Linux kernel

menuconfig configuration tool by running:

$ make linux-menuconfig

At this point, it is really important to not be confused by the fact that

both Buildroot and the Linux kernel use the same configuration

utility, but each have its own configuration. The Buildroot

configuration describes your overall system (target architecture,

which software components you want, which type of filesystem you

want, etc.) while the Linux kernel configuration describes the kernel

configuration itself (which drivers you want, which kernel features you

need, etc.). So make sure to not confuse the menuconfig of Buildroot

with the menuconfig of the Linux kernel!

Once you have run make linux-menuconfig , the menuconfig of the

Linux kernel will show up. You will then enable the following option:

Device Drivers

+- Industrial I/O support

 +- Pressure sensors

 +- Bosch Sensortec BMP180/BMP280 pressure sensor I2C

driver

Make sure to enable this option with a star <*> so that the driver is

compiled inside the kernel image itself and not as a separate kernel

module. You can then exit the menuconfig utility, and confirm that

you want to save the configuration.

At this point, the Linux kernel configuration file in output/build

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

19 of 30 5/16/19, 10:30 AM

/linux-custom/.config has been changed. You can confirm it by

running:

$ grep CONFIG_BMP280 output/build/linux-custom/.config

CONFIG_BMP280=y

CONFIG_BMP280_I2C=y

CONFIG_BMP280_SPI=y

However, as we explained earlier, the output/build/linux-custom/

folder is temporary: it would be removed when doing a Buildroot

make clean . We would like to permanently keep our Linux kernel

configuration. Once again, Buildroot provides a nice shortcut to do

this:

$ make linux-update-defconfig

After running this command, the kernel configuration file

board/stmicroelectronics/stm32mp157-dk/linux.config has been

updated, and this file is not temporary, and is under version control. If

you run git diff , you can see the change on this file:

$ git diff

[...]

index 878a0c39f1..12f3e22647 100644

--- a/board/stmicroelectronics/stm32mp157-dk/linux.config

+++ b/board/stmicroelectronics/stm32mp157-dk/linux.config

@@ -169,6 +169,7 @@ CONFIG_STM32_LPTIMER_CNT=y

 CONFIG_STM32_DAC=y

 CONFIG_IIO_HRTIMER_TRIGGER=y

 CONFIG_IIO_STM32_LPTIMER_TRIGGER=y

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

20 of 30 5/16/19, 10:30 AM

+CONFIG_BMP280=y

 CONFIG_PWM=y

 CONFIG_PWM_STM32=y

 CONFIG_PWM_STM32_LP=y

We’re all set for the kernel configuration!

Describing the BME280 in the Device Tree

We now need to tell the Linux kernel that we have a BME280 sensor

and how it is connected to the system, which is done by adding more

details into our Device Tree. We have already enabled the I2C5 bus,

and we now need to describe one device connected to it: this gets

done by creating a child node of the I2C controller node.

How do we know what to write in the Device Tree node describing

the BME280 ? Using Device Tree bindings. Those bindings are

specification documents that describe how a given device should be

represented in the Device Tree: which properties are available, what

are their possible values, etc. All Device Tree bindings supported by

the Linux kernel are documented in Documentation/devicetree

/bindings in the Linux kernel source code. For our BME280 device, the

binding is at Documentation/devicetree/bindings/iio/pressure

/bmp085.txt.

This document tells us that we have one required property, the

compatible property, with the range of possible values. Since we have

a BME280 sensor, we’ll use bosch,bme280 . The other properties are

optional, so we’ll ignore them for now. However, what this binding

does explicitly mention is the fact that a reg property is also

mandatory, to tell the Linux kernel the I2C address of the device. This

reg property is however visible in the example given in this binding

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

21 of 30 5/16/19, 10:30 AM

document.

So, we’ll go back to our linux/ directory outside of Buildroot, where

we cloned the Linux kernel repository, and we’ll adjust our Device

Tree file arch/arm/boot/dts/stm32mp157c-dk2.dts so that it contains:

&i2c5 {

status = "okay";

clock-frequency = <100000>;

pinctrl-names = "default", "sleep";

pinctrl-0 = <&i2c5_pins_a>;

pinctrl-1 = <&i2c5_pins_sleep_a>;

pressure@76 {

compatible = "bosch,bme280";

reg = <0x76>;

};

};

Re-building the kernel

Let’s now ask Buildroot to rebuild the Linux kernel, with our Device

Tree change and kernel configuration change. Instead of rebuilding

from scratch, we’ll just ask Buildroot to restart the build of the Linux

kernel, which will be much faster:

$ make linux-rebuild

As part of this, Buildroot will re-run rsync from our linux/ kernel Git

repository to output/build/linux-custom/ , so that we really build the

latest version of our code, which includes our Device Tree change.

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

22 of 30 5/16/19, 10:30 AM

However, this just rebuilds the Linux kernel, and not the complete SD

card image, so also run:

$ make

To regenerate the SD card image, write it on your SD card, and boot

your system.

Testing the sensor

After booting the system, if we check /sys/bus/i2c/devices , a new

entry has appeared:

lrwxrwxrwx 1-0076 � ../../../devices/platform/soc/40015000.i2c/i2c-1/1-0076

If we following this symbolic link, we can see a number of interesting

information:

ls -l /sys/bus/i2c/devices/1-0076/

total 0

lrwxrwxrwx driver � ../../../../../../bus/i2c/drivers/bmp280

drwxr-xr-x iio:device2

-r--r--r-- modalias

-r--r--r-- name

lrwxrwxrwx of_node � ../../../../../../firmware/devicetree/base/soc

/i2c@40015000/pressure@76

drwxr-xr-x power

lrwxrwxrwx subsystem � ../../../../../../bus/i2c

-rw-r--r-- uevent

Here we can see that this device is bound with the device driver

named bmp280 , and that its Device Tree node is base/soc/i2c@40015000

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

23 of 30 5/16/19, 10:30 AM

/pressure@76 .

Now, to actually use the sensor, we need to understand what is the

user-space interface provided by IIO devices. The kernel

documentation gives some hints:

There are two ways for a user space application to
interact with an IIO driver.

/sys/bus/iio/iio:deviceX/, this represents a hardware
sensor and groups together the data channels of the
same chip.
/dev/iio:deviceX, character device node interface used
for buffered data transfer and for events information
retrieval.

So, we’ll try to explore the /sys/bus/iio/ option:

ls -l /sys/bus/iio/devices/

total 0

lrwxrwxrwx iio:device0 � ../../../devices/platform/soc/48003000.adc

/48003000.adc:adc@0/iio:device0

lrwxrwxrwx iio:device1 � ../../../devices/platform/soc/48003000.adc

/48003000.adc:adc@100/iio:device1

lrwxrwxrwx iio:device2 � ../../../devices/platform/soc/40015000.i2c/i2c-1

/1-0076/iio:device2

lrwxrwxrwx iio:device3 � ../../../devices/platform/soc/48003000.adc

/48003000.adc:temp/iio:device3

lrwxrwxrwx trigger0 � ../../../devices/platform/soc/40004000.timer/trigger0

Here we can see a number of IIO devices: our IIO device is

iio:device2 , as can be seen by looking at the target of the linkx. The

other ones are IIO devices related to the ADC on the STM32 processor.

Let’s check what we have inside /sys/bus/iio/devices/iio:device2/ :

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

24 of 30 5/16/19, 10:30 AM

ls -l /sys/bus/iio/devices/iio\:device2/

total 0

-r--r--r-- dev

-rw-r--r-- in_humidityrelative_input

-rw-r--r-- in_humidityrelative_oversampling_ratio

-rw-r--r-- in_pressure_input

-rw-r--r-- in_pressure_oversampling_ratio

-r--r--r-- in_pressure_oversampling_ratio_available

-rw-r--r-- in_temp_input

-rw-r--r-- in_temp_oversampling_ratio

-r--r--r-- in_temp_oversampling_ratio_available

-r--r--r-- name

lrwxrwxrwx of_node � ../../../../../../../firmware/devicetree/base/soc

/i2c@40015000/pressure@76

drwxr-xr-x power

lrwxrwxrwx subsystem � ../../../../../../../bus/iio

-rw-r--r-- uevent

This is becoming interesting! We have a number of files that we can

read to get the humidity, pressure, and temperature:

cat /sys/bus/iio/devices/iio\:device2

/in_humidityrelative_input

49147

cat /sys/bus/iio/devices/iio\:device2/in_pressure_input

101.567167968

cat /sys/bus/iio/devices/iio\:device2/in_temp_input

24380

Now, let’s check the kernel documentation at Documentation/ABI

/testing/sysfs-bus-iio to understand the units used in these files:

What: /sys/bus/iio/devices/iio:deviceX/in_tempX_input

Description:

Scaled temperature measurement in milli degrees Celsius.

What: /sys/bus/iio/devices/iio:deviceX/in_pressure_input

Description:

Scaled pressure measurement from channel Y, in kilopascal.

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

25 of 30 5/16/19, 10:30 AM

What: /sys/bus/iio/devices/iio:deviceX/in_humidityrelative_input

Description:

Scaled humidity measurement in milli percent.

So here we are: we are able to read the data from our sensor, and the

Linux kernel driver does all the conversion work to convert the raw

values from the sensors into usable values in meaningful units.

Turning our kernel change into a
patch

Our Device Tree change is for now only located in our local Linux

kernel Git repository: if another person builds our Buildroot

configuration, he won’t have access to this Linux kernel Git repository,

which Buildroot knows about thanks to the LINUX_OVERRIDE_SRCDIR

variable. So what we’ll do now is to generate a Linux kernel patch that

contains our Device Tree change, add it to Buildroot, and ask

Buildroot to apply it when building the Linux kernel. Let’s get started.

First, go in your Linux kernel Git repository in linux/ , review your

Device Tree change with git diff , and if everything is alright, make a

commit out of it:

$ git commit -as -m "ARM: dts: add support for BME280 sensor

on STM32MP157 DK2"

Then, generate a patch out of this commit:

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

26 of 30 5/16/19, 10:30 AM

$ git format-patch HEAD^

This will create a file called 0001-ARM-dts-add-support-for-BME280-

sensor-on-STM32MP157-.patch that contains our Device Tree change.

Now, back in Buildroot in the buildroot/ folder, create the

board/stmicroelectronics/stm32mp157-dk/patches/ folder and a sub-

directory board/stmicroelectronics/stm32mp157-dk/patches/linux . Copy

the patch into this folder, so that the file hierarchy looks like this:

$ tree board/stmicroelectronics/stm32mp157-dk/

board/stmicroelectronics/stm32mp157-dk/

├── genimage.cfg
├── linux.config
├── overlay
│ └── boot
│ └── extlinux
│ └── extlinux.conf
├── patches
│ └── linux
│ └── 0001-ARM-dts-add-support-for-BME280-sensor-on-
STM32MP157-.patch

├── readme.txt
└── uboot-fragment.config

Now, run Buildroot’s menuconfig:

$ make menuconfig

And in Build options , set global patch directories to the value

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

27 of 30 5/16/19, 10:30 AM

board/stmicroelectronics/stm32mp157-dk/patches/ . This tells Buildroot to

apply patches located in this folder whenever building packages. This

way, when the linux package will be built, our patch in

board/stmicroelectronics/stm32mp157-dk/patches/linux/ will be applied.

We can now remove the local.mk file to disable the

pkg_OVERRIDE_SRCDIR mechanism, and ask Buildroot to rebuild the

Linux kernel:

$ rm local.mk

$ make linux-dirclean

$ make

If you pay attention to the Linux kernel build process, you will see that

during the Patching step, our Device Tree patch gets applied:

>>> linux custom Patching

Applying 0001-ARM-dts-add-support-for-BME280-sensor-on-

STM32MP157-.patch using patch:

patching file arch/arm/boot/dts/stm32mp157c-dk2.dts

You can of course reflash the SD card at the end of the build, and

verify that everything still works as expected.

Let’s save our Buildroot configuration change:

$ make savedefconfig

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

28 of 30 5/16/19, 10:30 AM

And commit our Buildroot changes:

$ git add board/stmicroelectronics/stm32mp157-dk/linux.config

$ git add board/stmicroelectronics/stm32mp157-dk/patches/

$ git add configs/stm32mp157_dk_defconfig

$ git commit -s -m "configs/stm32mp157_dk: enable support for

BME280 sensor"

We can now share our Buildroot change with others: they can build

our improved system which has support for the BME280 sensor.

Conclusion

In this article, we have learned a lot of things:

How to connect an I2C sensor to the Discovery board

What is the Device Tree, and how it is used to describe devices

How to use Buildroot’s pkg_OVERRIDE_SRCDIR mechanism

How to enable the I2C bus in the Device Tree and test its operation

using i2cdetect and i2cget

How to change the Linux kernel configuration to enable a new

driver

How to interact using sysfs with a sensor supported by the IIO

subsystem

How to generate a Linux kernel patch, and add it into Buildroot

In our next article, we’ll look at adding support for the Qt5 graphical

library into our system, as a preparation to developing a Qt5

application that will display our sensor measurements on the

Discovery board screen.

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

29 of 30 5/16/19, 10:30 AM

Bootlin Privacy Policy Proudly powered by WordPress

Author: Thomas Petazzoni
Thomas Petazzoni is CTO and embedded Linux and kernel engineer at

Bootlin. He is a lead developer of Buildroot and also a contributor to the

Linux kernel. More details... View all posts by Thomas Petazzoni

Thomas Petazzoni May 16, 2019 Technical/ / /

/ /

Building a Linux system for the STM32MP1: co... https://bootlin.com/?p=12561&preview=true

30 of 30 5/16/19, 10:30 AM

